血红蛋白糖化指数与脓毒症患者不良预后的关系

袁红秀, 唐发娟, 李熙鸿. 血红蛋白糖化指数与脓毒症患者不良预后的关系[J]. 临床急诊杂志, 2025, 26(1): 31-38. doi: 10.13201/j.issn.1009-5918.2025.01.006
引用本文: 袁红秀, 唐发娟, 李熙鸿. 血红蛋白糖化指数与脓毒症患者不良预后的关系[J]. 临床急诊杂志, 2025, 26(1): 31-38. doi: 10.13201/j.issn.1009-5918.2025.01.006
YUAN Hongxiu, TANG Fajuan, LI Xihong. Association between hemoglobin glycation index and poor prognosis in patients with sepsis[J]. J Clin Emerg, 2025, 26(1): 31-38. doi: 10.13201/j.issn.1009-5918.2025.01.006
Citation: YUAN Hongxiu, TANG Fajuan, LI Xihong. Association between hemoglobin glycation index and poor prognosis in patients with sepsis[J]. J Clin Emerg, 2025, 26(1): 31-38. doi: 10.13201/j.issn.1009-5918.2025.01.006

血红蛋白糖化指数与脓毒症患者不良预后的关系

  • 基金项目:
    国家自然科学基金(No:82071353);四川省科技厅重点研发项目(No:2021YFS0029)
详细信息

Association between hemoglobin glycation index and poor prognosis in patients with sepsis

More Information
  • 目的 探讨血红蛋白糖化指数(hemoglobin glycation index,HGI)对脓毒症患者全因死亡率的预测价值。方法 选取MIMIC-Ⅳ 3.0中符合脓毒症3.0诊断标准首次入住重症监护病房(intensive care unit,ICU)的3 106例成年患者。收集患者的临床资料,基于HGI的四分位数分组(Q1、Q2、Q3和Q4组),绘制K-M生存曲线,并使用log-rank检验比较组间生存状态的差异。采用多因素Cox比例风险回归模型探讨HGI与全因死亡率之间的相关性。通过限制性立方样条回归和亚组分析对结果进行验证,以评估其稳健性。结果 3 106例患者中,ICU 28 d死亡率、住院死亡率和ICU死亡率分别为22.12%、19.96%和14.94%。Kaplan-Meier曲线和log-rank检验显示,Q1组的中位生存时间显著短于其他组(P < 0.01)。多因素Cox比例风险回归分析表明,HGI与脓毒症患者死亡风险显著相关(P < 0.05),即HGI降低与死亡风险增加相关。限制性立方样条回归分析显示,HGI增加使ICU 28 d死亡率和住院死亡率线性下降,ICU死亡率虽非线性下降,但也随HGI增加而降低。不同结局的亚组间效应大小和方向保持一致。结论 HGI低水平与脓毒症患者不良预后显著相关。
  • 加载中
  • 图 1  28 d死亡率Kaplan-Meier生存曲线

    图 2  HGI与脓毒症全因死亡风险的RCS回归分析

    图 3  HGI与脓毒症全因死亡风险的亚组分析森林图

    表 1  不同血红蛋白糖化指数组间的临床特征比较M(P25P75)

    指标 Q1(≤-0.861) Q2(-0.861,-0.337) Q3(-0.337,0.367) Q4(>0.367) P
    男/例(%) 457(58.82) 485(62.42) 459(59.15) 465(59.92) 0.460
    年龄/岁 63.57(51.39,73.40) 67.41(55.45,77.63) 70.68(60.23,78.81) 66.06(55.85,74.54) < 0.001
    体重/kg 77.9(67.3,94.0) 80.0(68.8,95.7) 83.3(69.5,100.0) 85.5(72.0,103.0) < 0.001
    生命体征
      心率/(次/min) 91(78,106) 86(73,100) 85(73,100) 89(76,102) < 0.001
      收缩压/mmHg 123(105,142) 127(108,143) 128(111,146) 128(111,147) < 0.001
    实验室检查
      WBC/(×109/L) 13.8(9.5,19.0) 11.3(8.3,15.5) 10.4(8.0,14.7) 11.4(8.3,16.1) < 0.001
      PLT/(×109/L) 210(152,278) 210(157,281) 212(160,274) 225(169,288) 0.006
      Hb/(g/dL) 11.9(9.9,13.8) 12.1(10.5,13.8) 12.3(10.5,13.6) 11.9(10.1,13.4) 0.040
      RDW/% 14.0(13.2,15.8) 13.9(13.1,15.1) 14.2(13.3,15.5) 14.1(13.2,15.5) 0.003
      ALT/(IU/L) 39.0(21.0,82.7) 30.0(18.0,58.0) 30.0(17.5,51.0) 31.0(20.0,51.0) < 0.001
      AST/(IU/L) 62.4(33.0,128.5) 47.0(26.0,87.0) 41.0(24.5,79.5) 44.8(25.0,82.5) < 0.001
      ALP/(IU/L) 86.0(67.0,115.0) 81.0(64.0,98.0) 84.0(66.0,105.8) 91.0(75.0,119.9) < 0.001
      TB/(mg/dL) 0.7(0.5,1.1) 0.7(0.5,0.9) 0.6(0.5,0.9) 0.6(0.4,0.8) < 0.001
      BUN/(mg/dL) 20(14,34) 19(14,31) 21(15,30) 23(15,40) < 0.001
      SCr/(mg/dL) 1.2(0.9,1.8) 1.0(0.8,1.5) 1.0(0.8,1.4) 1.2(0.8,1.9) < 0.001
      PT/s 13.3(11.9,15.9) 13.0(11.9,15.2) 13.4(12.1,15.7) 13.1(11.9,15.1) 0.016
      PTT/s 30.7(26.8,39.9) 30.2(26.4,38.3) 30.2(26.6,37.5) 29.6(26.4,35.4) 0.007
      AG/(mEq/L) 17(14,21) 15(13,17) 15(13,17) 16(13,19) < 0.001
      钠/(mEq/L) 138(135,140) 138(136,141) 139(136,141) 137(134,140) < 0.001
      钾/(mEq/L) 4.3(3.9,4.8) 4.2(3.8,4.6) 4.2(3.9,4.6) 4.3(3.9,4.9) < 0.001
      氯/(mEq/L) 102(98,105) 103(99,106) 103(99,105) 101(97,105) < 0.001
      HbA1c/% 5.3(5.0,5.7) 5.6(5.4,5.8) 6.1(5.8,6.4) 8.4(7.2,10.4) < 0.001
      FPG/(mg/dL) 183(134,272) 130(109,160) 126(104,162) 192(140,301) < 0.001
      HGI/% -1.24(-1.63,-1.01) -0.58(-0.71,-0.46) -0.06(-0.22,0.14) 1.47(0.74,2.82) < 0.001
    疾病严重程度评分/分
      SOFA 7(5,10) 6(4,9) 5(3,8) 6(4,8) < 0.001
      CCI 6(4,8) 6(4,8) 6(5,8) 7(5,9) < 0.001
      SAPS Ⅱ 39(32,50) 37(29,45) 35(29,43) 38(30,46) < 0.001
      APS Ⅲ 59(44,83) 52(38,72) 48(36,67) 55(42,74) < 0.001
    合并症/例(%)
      肾脏疾病 158(20.33) 151(19.43) 166(21.39) 239(30.80) < 0.001
      恶性肿瘤 60(7.72) 50(6.44) 51(6.57) 58(7.47) 0.690
      充血性心力衰竭 244(31.40) 252(32.43) 323(41.62) 306(39.43) < 0.001
      糖尿病 204(26.25) 170(21.88) 265(34.15) 692(89.18) < 0.001
      高血压 297(38.22) 363(46.72) 363(46.78) 339(43.69) 0.002
      脑卒中 204(26.25) 233(29.99) 234(30.15) 190(24.48) 0.027
      肺炎 248(31.92) 254(32.69) 275(35.44) 275(35.44) 0.320
      休克 144(18.53) 107(13.77) 95(12.24) 144(18.56) < 0.001
      慢性阻塞性肺疾病 80(10.30) 68(8.75) 89(11.47) 78(10.05) 0.370
      冠心病 248(31.92) 230(29.60) 216(27.84) 260(33.51) 0.077
      房颤 219(28.19) 273(35.14) 333(42.91) 221(28.48) < 0.001
      肝病 113(14.54) 55(7.08) 48(6.19) 37(4.77) < 0.001
      急性肾衰竭 635(81.72) 619(79.67) 644(82.99) 627(80.80) 0.390
    感染部位/例(%)
      肺部感染 158(20.33) 160(20.59) 168(21.65) 149(19.20) 0.690
      消化系感染 53(6.82) 31(3.99) 35(4.51) 40(5.15) 0.064
      泌尿系感染 146(18.79) 140(18.02) 166(21.39) 168(21.65) 0.180
      其他感染 328(42.21) 270(34.75) 264(34.02) 336(43.30) < 0.001
    糖皮质激素/例(%) 20(2.57) 19(2.45) 20(2.58) 25(3.22) 0.780
    注:1 mmHg=0.133 kPa。
    下载: 导出CSV

    表 2  不同血红蛋白糖化指数组间不良事件及临床预后对比 M(P25P75)

    指标 Q1(≤-0.861) Q2(-0.861,-0.337) Q3(-0.337,0.367) Q4(>0.367) P
    住院时间/d 14.8(13.3) 15.7(15.3) 15.5(13.5) 17.2(15.9) 0.004
    院内死亡/例(%) 200(25.74) 148(19.05) 139(17.91) 133(17.14) < 0.001
    ICU停留时间/d 8.3(8.9) 8.5(8.6) 8.1(8.1) 8.6(9.0) 0.870
    ICU死亡/例(%) 157(20.21) 115(14.80) 94(12.11) 98(12.63) < 0.001
    28 d死亡/例(%) 219(28.19) 180(23.17) 150(19.33) 138(17.78) < 0.001
    注:ICU死亡指患者在ICU期间死亡;28 d死亡指患者进入ICU后28 d内发生的死亡事件。
    下载: 导出CSV

    表 3  脓毒症患者全因死亡率的Cox回归分析

    暴露 模型1 模型2 模型3
    HR(95%CI) P HR(95%CI) P HR(95%CI) P
    ICU 28 d全因死亡率
      HGIa) 0.86(0.82~0.91) < 0.001 0.87(0.82~0.92) < 0.001 0.90(0.86~0.95) < 0.001
      Q1b) 1.77(1.43~2.19) < 0.001 1.71(1.38~2.13) < 0.001 1.48(1.18~1.85) 0.001
      Q2b) 1.36(1.09~1.70) 0.007 1.26(1.01~1.57) 0.044 1.36(1.08~1.72) 0.009
      Q3b) 1.10(0.87~1.38) 0.430 0.99(0.78~1.25) 0.918 1.17(0.92~1.48) 0.199
    住院全因死亡率
      HGIa) 0.87(0.82~0.92) < 0.001 0.88(0.83~0.93) < 0.001 0.91(0.86~0.96) 0.001
      Q1b) 1.72(1.38~2.15) < 0.001 1.68(1.34~2.10) < 0.001 1.41(1.11~1.78) 0.004
      Q2b) 1.24(0.98~1.56) 0.078 1.17(0.93~1.49) 0.186 1.17(0.92~1.50) 0.204
      Q3b) 1.16(0.92~1.48) 0.215 1.09(0.85~1.38) 0.505 1.16(0.91~1.48) 0.236
    ICU全因死亡率
      HGIa) 0.86(0.80~0.92) < 0.001 0.86(0.81~0.93) < 0.001 0.89(0.83~0.95) 0.001
      Q1b) 1.65(1.28~2.12) < 0.001 1.59(1.23~2.06) < 0.001 1.42(1.09~1.85) 0.010
      Q2b) 1.21(0.92~1.59) 0.163 1.17(0.89~1.54) 0.255 1.23(0.92~1.64) 0.157
      Q3b) 1.07(0.80~1.42) 0.660 1.01(0.76~1.35) 0.936 1.14(0.85~1.52) 0.397
    注:a)HGI作为连续性变量纳入Cox比例风险回归模型;b)HGI作为分类变量纳入Cox比例风险回归模型,以Q4为参考组。模型1:未调整协变量;模型2:调整年龄、性别、体重;模型3:调整年龄、性别、体重、心率、收缩压、SOFA评分、CCI评分及既往糖皮质激素使用情况。
    下载: 导出CSV
  • [1]

    Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287

    [2]

    Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the global burden of disease study[J]. Lancet, 2020, 395(10219): 200-211. doi: 10.1016/S0140-6736(19)32989-7

    [3]

    Prescott HC, Angus DC. Enhancing recovery from sepsis: a review[J]. JAMA, 2018, 319(1): 62-75. doi: 10.1001/jama.2017.17687

    [4]

    He RR, Yue GL, Dong ML, et al. Sepsis biomarkers: advancements and clinical applications-a narrative review[J]. Int J Mol Sci, 2024, 25(16): 9010. doi: 10.3390/ijms25169010

    [5]

    Kahn F, Tverring J, Mellhammar L, et al. Heparin-binding protein as a prognostic biomarker of sepsis and disease severity at the emergency department[J]. Shock, 2019, 52(6): e135-e145. doi: 10.1097/SHK.0000000000001332

    [6]

    Karakike E, Adami ME, Lada M, et al. Late peaks of HMGB1 and sepsis outcome: evidence for synergy with chronic inflammatory disorders[J]. Shock, 2019, 52(3): 334-339. doi: 10.1097/SHK.0000000000001265

    [7]

    Jiang WQ, Li XS, Ding HG, et al. PD-1 in tregs predicts the survival in sepsis patients using sepsis-3 criteria: a prospective, two-stage study[J]. Int Immunopharmacol, 2020, 89(Pt A): 107175. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704028603315.html

    [8]

    Hsiao SY, Kung CT, Tsai NW, et al. Concentration and value of endocan on outcome in adult patients after severe sepsis[J]. Clin Chim Acta, 2018, 483: 275-280. doi: 10.1016/j.cca.2018.05.007

    [9]

    Trevelin SC, Carlos D, Beretta M, et al. Diabetes mellitus and sepsis: a challenging association[J]. Shock, 2017, 47(3): 276-287. doi: 10.1097/SHK.0000000000000778

    [10]

    Nayak AU, Singh BM, Dunmore SJ. Potential clinical error arising from use of HbA1c in diabetes: effects of the glycation gap[J]. Endocr Rev, 2019, 40(4): 988-999. doi: 10.1210/er.2018-00284

    [11]

    Hempe JM, Gomez R, McCarter RJ Jr, et al. High and low hemoglobin glycation phenotypes in type 1 diabetes: a challenge for interpretation of glycemic control[J]. J Diabetes Complications, 2002, 16(5): 313-320. doi: 10.1016/S1056-8727(01)00227-6

    [12]

    Hempe JM, Liu SQ, Myers L, et al. The hemoglobin glycation index identifies subpopulations with harms or benefits from intensive treatment in the ACCORD trial[J]. Diabetes Care, 2015, 38(6): 1067-1074. doi: 10.2337/dc14-1844

    [13]

    Liu SQ, Hempe JM, McCarter RJ, et al. Association between inflammation and biological variation in hemoglobin A1c in U.S. nondiabetic adults[J]. J Clin Endocrinol Metab, 2015, 100(6): 2364-2371. doi: 10.1210/jc.2014-4454

    [14]

    Lyu L, Yu J, Liu YW, et al. High hemoglobin glycation index is associated with telomere attrition independent of HbA1c, mediated by TNF-α[J]. J Clin Endocrinol Metab, 2022, 107(2): 462-473. doi: 10.1210/clinem/dgab703

    [15]

    Lin ZY, He JN, Yuan S, et al. Hemoglobin glycation index and cardiovascular outcomes in patients with diabetes and coronary artery disease: insights from a large cohort study[J]. Nutr Diabetes, 2024, 14(1): 69. doi: 10.1038/s41387-024-00318-x

    [16]

    Huang Y, Huang XT, Zhong LY, et al. Glycated haemoglobin index is a new predictor for all-cause mortality and cardiovascular mortality in the adults[J]. Sci Rep, 2024, 14(1): 19629. doi: 10.1038/s41598-024-70666-2

    [17]

    Wei X, Chen XH, Zhang ZP, et al. Risk analysis of the association between different hemoglobin glycation index and poor prognosis in critical patients with coronary heart disease-a study based on the MIMIC-Ⅳ database[J]. Cardiovasc Diabetol, 2024, 23(1): 113. doi: 10.1186/s12933-024-02206-1

    [18]

    Wang SH, Song SN, Gao JX, et al. Glycated haemoglobin variability and risk of renal function declinein type 2 diabetes mellitus: an updated systematic review and meta-analysis[J]. Diabetes Obesity Metabolism, 2024, 26(11): 5167-5182. doi: 10.1111/dom.15861

    [19]

    Johnson AEW, Bulgarelli L, Shen L, et al. MIMIC-IV, a freely accessible electronic health record dataset[J]. Sci Data, 2023, 10(1): 1. doi: 10.1038/s41597-022-01899-x

    [20]

    潘岳松, 金奥铭, 王梦星. 临床研究样本量的估计方法和常见错误[J]. 中国卒中杂志, 2022, 17(1): 31-35.

    [21]

    He AF, Liu JL, Qiu JX, et al. Risk and mediation analyses of hemoglobin glycation index and survival prognosis in patients with sepsis[J]. Clin Exp Med, 2024, 24(1): 183. doi: 10.1007/s10238-024-01450-9

    [22]

    Khwaja A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): c179-c184. doi: 10.1159/000339789

    [23]

    Zheng R, Qian SZ, Shi YY, et al. Association between triglyceride-glucose index and in-hospital mortality in critically ill patients with sepsis: analysis of the MIMIC-Ⅳ database[J]. Cardiovasc Diabetol, 2023, 22(1): 307. doi: 10.1186/s12933-023-02041-w

    [24]

    Hu WH, Chen H, Ma CC, et al. Identification of indications for albumin administration in septic patients with liver cirrhosis[J]. Crit Care, 2023, 27(1): 300. doi: 10.1186/s13054-023-04587-3

    [25]

    Yan FJ, Chen XH, Quan XQ, et al. Association between the stress hyperglycemia ratio and 28-day all-cause mortality in critically ill patients with sepsis: a retrospective cohort study and predictive model establishment based on machine learning[J]. Cardiovasc Diabetol, 2024, 23(1): 163. doi: 10.1186/s12933-024-02265-4

    [26]

    齐霜, 周飞虎. 电子病历数据库脓毒症病例筛选方法综述[J]. 解放军医学院学报, 2020, 41(9): 918-921, 929.

    [27]

    Wang M, Li S, Zhang X, et al. Association between hemoglobin glycation index and non-alcoholic fatty liver disease in the patients with type2 diabetes mellitus[J]. J Diabetes Investig, 2023, 14(11): 1303-1311. doi: 10.1111/jdi.14066

    [28]

    Xing Y, Zhen Y, Yang L, et al. Association between hemoglobin glycation index and non-alcoholic fatty liver disease[J]. Front Endocrinol(Lausanne), 2023, 14: 1094101. doi: 10.3389/fendo.2023.1094101

    [29]

    Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia[J]. Lancet, 2009, 373(9677): 1798-1807. doi: 10.1016/S0140-6736(09)60553-5

    [30]

    Fowler C, Raoof N, Pastores SM. Sepsis and adrenal insufficiency[J]. J Intensive Care Med, 2023, 38(11): 987-996. doi: 10.1177/08850666231183396

    [31]

    Vedantam D, Poman DS, Motwani L, et al. Stress-induced hyperglycemia: consequences and management[J]. Cureus, 2022, 14(7): e26714.

    [32]

    van Vught LA, Wiewel MA, Klein Klouwenberg PM, et al. Admission hyperglycemia in critically ill sepsis patients: association with outcome and host response[J]. Crit Care Med, 2016, 44(7): 1338-1346. doi: 10.1097/CCM.0000000000001650

    [33]

    Zohar Y, Zilberman Itskovich S, Koren S, et al. The association of diabetes and hyperglycemia with sepsis outcomes: a population-based cohort analysis[J]. Intern Emerg Med, 2021, 16(3): 719-728. doi: 10.1007/s11739-020-02507-9

    [34]

    Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Crit Care Med, 2021, 49(11): e1063-e1143. doi: 10.1097/CCM.0000000000005337

    [35]

    Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress[J]. Circulation, 2002, 106(16): 2067-2072. doi: 10.1161/01.CIR.0000034509.14906.AE

    [36]

    Krogh-Madsen R, Møller K, Dela F, et al. Effect of hyperglycemia and hyperinsulinemia on the response of IL-6, TNF-alpha, and FFAs to low-dose endotoxemia in humans[J]. Am J Physiol Endocrinol Metab, 2004, 286(5): E766-E772. doi: 10.1152/ajpendo.00468.2003

    [37]

    Zhou XM, Liu C, Xu Z, et al. Combining host immune response biomarkers and clinical scores for early prediction of sepsis in infection patients[J]. Ann Med, 2024, 56(1): 2396569. doi: 10.1080/07853890.2024.2396569

    [38]

    Yu W, Zeng LY, Lian X, et al. Dynamic cytokine profiles of bloodstream infection caused by Klebsiella pneumoniae in China[J]. Ann Clin Microbiol Antimicrob, 2024, 23(1): 79. doi: 10.1186/s12941-024-00739-7

    [39]

    Feng Y, Luo S, Fang C, et al. ANGPTL8 deficiency attenuates lipopolysaccharide-induced liver injury by improving lipid metabolic dysregulation[J]. J Lipid Res, 2024, 65(8): 100595. doi: 10.1016/j.jlr.2024.100595

    [40]

    Kinoshita K, Kraydieh S, Alonso O, et al. Effect of posttraumatic hyperglycemia on contusion volume and neutrophil accumulation after moderate fluid-percussion brain injury in rats[J]. J Neurotrauma, 2002, 19(6): 681-692. doi: 10.1089/08977150260139075

    [41]

    Ceriello A, Quagliaro L, Piconi L, et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment[J]. Diabetes, 2004, 53(3): 701-710. doi: 10.2337/diabetes.53.3.701

    [42]

    Altannavch TS, Roubalová K, Kucera P, et al. Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation[J]. Physiol Res, 2004, 53(1): 77-82. http://www.researchgate.net/profile/Katerina_Roubalova/publication/6363572_Effect_of_high_glucose_concentrations_on_expression_of_ELAM-1_VCAM-1_and_ICAM-1_in_HUVEC_with_and_without_cytokine_activation/links/09e4150ed20fedbd1b000000

    [43]

    Zhao M, Wang ST, Zuo AN, et al. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury[J]. Cell Mol Biol Lett, 2021, 26(1): 40. doi: 10.1186/s11658-021-00283-8

  • 加载中
计量
  • 文章访问数:  319
  • 施引文献:  0
出版历程
收稿日期:  2024-09-14
刊出日期:  2025-01-10

返回顶部

目录