-
摘要: 目前心脏骤停后脑损伤(post-cardiac arrest brain injury,PCABI)的病理生理机制研究尚不透彻,导致PCABI相关的治疗效果欠佳。神经血管单位(neurovascular unit,NVU)主要是由血管相关细胞、神经胶质细胞和神经元组成。NVU在调节脑血流量(cerebral blood flow,CBF)、维持血脑屏障((blood-brain barrier,BBB)的完整性和神经功能等方面具有重要作用。BBB功能障碍和CBF下降是导致PCABI的重要原因。本综述旨在探讨NVU结构和功能在PCABI中的潜在病理生理机制,从而找到切实有效的治疗靶点改善其预后。Abstract: The pathophysiological mechanisms underlying post-cardiac arrest brain injury(PCABI) remain unclear, resulting in suboptimal therapeutic efficacy for PCABI. The neurovascular unit(NVU), which is primarily composed of vascular-related cells, glial cells, and neurons, plays a crucial role in regulating cerebral blood flow(CBF), maintaining the integrity of the blood-brain barrier(BBB), and performing neuronal function. Dysfunction of the BBB and decline in CBF are significant contributors to PCABI. This review aims to explore the potential pathophysiological mechanisms of NVU structure and function in PCABI, in order to identify effective therapeutic targets and improve its prognosis.
-
[1] Buunk G, van der Hoeven JG, Meinders AE. Cerebral blood flow after cardiac arrest[J]. Neth J Med, 2000, 57(3): 106-112. doi: 10.1016/S0300-2977(00)00059-0
[2] Reis C, Akyol O, Araujo C, et al. Pathophysiology and the Monitoring Methodsfor Cardiac Arrest Associated Brain Injury[J]. Int J Mol Sci, 2017, 18(1): 129. doi: 10.3390/ijms18010129
[3] Wang L, Xiong X, Zhang L, et al. Neurovascular Unit: A critical role in ischemic stroke[J]. CNS Neurosci Ther, 2021, 27(1): 7-16. doi: 10.1111/cns.13561
[4] Sweeney MD, Kisler K, Montagne A, et al. The role of brain vasculature in neurodegenerative disorders[J]. Nat Neurosci, 2018, 21(10): 1318-1331. doi: 10.1038/s41593-018-0234-x
[5] Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM, et al. Glial cells and energy balance[J]. J Mol Endocrinol, 2017, 58(1): R59-R71. doi: 10.1530/JME-16-0182
[6] Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow[J]. Nature, 2010, 468(7321): 232-243. doi: 10.1038/nature09613
[7] Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis[J]. Intensive Care Med, 2021, 47(12): 1393-1414. doi: 10.1007/s00134-021-06548-2
[8] Sharma HS, Patnaik R, Sharma A, et al. The contribution of glial cells and water channel aquaporin-4 in the neuropathology of cardiac arrest is still ignored[J]. CNS Neurol Disord Drug Targets, 2013, 12(1): 3. doi: 10.2174/1871527311312010003
[9] Shi K, Tian DC, Li ZG, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11): 1058-1066. doi: 10.1016/S1474-4422(19)30078-X
[10] von Bernhardi R, Heredia F, Salgado N, et al. Microglia Function in the Normal Brain[J]. Adv Exp Med Biol, 2016, 949: 67-92.
[11] Kono H, Rock KL. How dying cells alert the immune system to danger[J]. Nat Rev Immunol, 2008, 8(4): 279-289. doi: 10.1038/nri2215
[12] Zhou Z, Hou J, Mo Y, et al. Geniposidic acid ameliorates spatial learning and memory deficits and alleviates neuroinflammation via inhibiting HMGB-1 and downregulating TLR4/2 signaling pathway in APP/PS1 mice[J]. Eur J Pharmacol, 2020, 869: 172857. doi: 10.1016/j.ejphar.2019.172857
[13] Yao X, Jiang Q, Ding W, et al. Interleukin 4 inhibits high mobility group box-1 protein-mediated NLRP3 inflammasome formation by activating peroxisome proliferator-activated receptor-γ in astrocytes[J]. Biochem Biophys Res Commun, 2019, 509(2): 624-631. doi: 10.1016/j.bbrc.2018.11.145
[14] Price BR, Norris CM, Sompol P, et al. An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia[J]. J Neurochem, 2018, 144(5): 644-650. doi: 10.1111/jnc.14273
[15] Hasegawa-Ishii S, Inaba M, Umegaki H, et al. Endotoxemia-induced cytokine-mediated responses of hippocampal astrocytes transmitted by cells of the brain-immune interface[J]. Sci Rep, 2016, 6: 25457. doi: 10.1038/srep25457
[16] Yamazaki Y, Kanekiyo T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer's Disease[J]. Int J Mol Sci, 2017, 18(9): 1965. doi: 10.3390/ijms18091965
[17] Lee CH, Lee TK, Kim DW, et al. Relationship between Neuronal Damage/Death and Astrogliosis in the Cerebral Motor Cortex of Gerbil Models of Mild and Severe Ischemia and Reperfusion Injury[J]. Int J Mol Sci, 2022, 23(9): 5096. doi: 10.3390/ijms23095096
[18] Ahn JH, Lee TK, Kim DW, et al. Therapeutic Hypothermia after Cardiac Arrest Attenuates Hindlimb Paralysis and Damage of Spinal Motor Neurons and Astrocytes through Modulating Nrf2/HO-1 Signaling Pathway in Rats[J]. Cells, 2023, 12(3): 414. doi: 10.3390/cells12030414
[19] Giovannoni F, Quintana FJ. The Role of Astrocytes in CNS Inflammation[J]. Trends Immunol, 2020, 41(9): 805-819. doi: 10.1016/j.it.2020.07.007
[20] He M, Dong H, Huang Y, et al. Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells[J]. Cell Physiol Biochem, 2016, 38(3): 859-870. doi: 10.1159/000443040
[21] Parajuli B, Horiuchi H, Mizuno T, et al. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia[J]. Glia, 2015, 63(12): 2274-2284. doi: 10.1002/glia.22892
[22] Geppert A, Zorn G, Karth GD, et al. Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation[J]. Crit Care Med, 2000, 28(7): 2360-2365. doi: 10.1097/00003246-200007000-00030
[23] Bro-Jeppesen J, Johansson PI, Hassager C, et al. Endothelial activation/injury and associations with severity of post-cardiac arrest syndrome and mortality after out-of-hospital cardiac arrest[J]. Resuscitation, 2016, 107(1): 71-79.
[24] Lee RH, Wu CY, Citadin CT, et al. Activation of Neuropeptide Y2 Receptor Can Inhibit Global Cerebral Ischemia-Induced Brain Injury[J]. Neuromolecular Med, 2022, 24(2): 97-112. doi: 10.1007/s12017-021-08665-z
[25] Wada T, Gando S, Ono Y, et al. Disseminated intravascular coagulation with the fibrinolytic phenotype predicts the outcome of patients with out-of-hospital cardiac arrest[J]. Thromb J, 2016, 14(1): 43. doi: 10.1186/s12959-016-0116-y
[26] Zhu J, Li X, Yin J, et al. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats[J]. J Cereb Blood Flow Metab, 2018, 38(11): 1979-1992. doi: 10.1177/0271678X17726062
[27] Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication: a scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke(Part Ⅱ)[J]. Int Emerg Nurs, 2010, 18(1): 8-28. doi: 10.1016/j.ienj.2009.07.001
[28] Yemisci M, Gursoy-Ozdemir Y, Vural A, et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery[J]. Nat Med, 2009, 15(9): 1031-1037. doi: 10.1038/nm.2022
[29] Tan EK, Chao YX, West A, et al. Parkinson disease and the immune system-associations, mechanisms and therapeutics[J]. Nat Rev Neurol, 2020, 16(6): 303-318. doi: 10.1038/s41582-020-0344-4
[30] Kugler EC, Greenwood J, MacDonald RB. The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction[J]. Front Cell Dev Biol, 2021, 9: 732820. doi: 10.3389/fcell.2021.732820
[31] Menon DK, Coles JP, Gupta AK, et al. Diffusion limited oxygen delivery following head injury[J]. Crit Care Med, 2004, 32(6): 1384-1390. doi: 10.1097/01.CCM.0000127777.16609.08
[32] White BR, Ko TS, Morgan RW, et al. Low frequency power in cerebral blood flow is a biomarker of neurologic injury in the acute period after cardiac arrest[J]. Resuscitation, 2022, 178(1): 12-18.
[33] Hoiland RL, Ainslie PN, Wellington CL, et al. Brain Hypoxia Is Associated With Neuroglial Injury in Humans Post-Cardiac Arrest[J]. Circ Res, 2021, 129(5): 583-597. doi: 10.1161/CIRCRESAHA.121.319157
[34] Mazzoli CA, Chiarini V, Coniglio C, et al. Resuscitative Endovascular Balloon Occlusion of the Aorta(REBOA)in Non-Traumatic Cardiac Arrest: A Narrative Review of Known and Potential Physiological Effects[J]. J Clin Med, 2022, 11(3): 742. doi: 10.3390/jcm11030742
[35] Li L, Poloyac SM, Watkins SC, et al. Cerebral microcirculatory alterations and the no-reflow phenomenon in vivo after experimental pediatric cardiac arrest[J]. J Cereb Blood Flow Metab, 2019, 39(5): 913-925. doi: 10.1177/0271678X17744717
[36] Sekhon MS, Gooderham P, Menon DK, et al. The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest[J]. Crit Care Med, 2019, 47(7): 960-969. doi: 10.1097/CCM.0000000000003745
[37] Yang Q, Huang Q, Hu Z, et al. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation[J]. Front Neurosci, 2019, 13: 1036. doi: 10.3389/fnins.2019.01036
[38] Chen HS, Chen X, Li WT, et al. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery[J]. Acta Pharmacol Sin, 2018, 39(5): 669-682. doi: 10.1038/aps.2018.27
[39] Madathil RJ, Hira RS, Stoeckl M, et al. Ischemia reperfusion injury as a modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation[J]. Resuscitation, 2016, 105: 85-91. doi: 10.1016/j.resuscitation.2016.04.009
[40] Spoelstra-de Man A, Elbers P, Oudemans-van Straaten HM. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury[J]. Crit Care, 2018, 22(1): 70. doi: 10.1186/s13054-018-1996-y
[41] Tobin MK, Bonds JA, Minshall RD, et al. Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here[J]. J Cereb Blood Flow Metab, 2014, 34(10): 1573-1584. doi: 10.1038/jcbfm.2014.130
[42] Jou C, Shah R, Figueroa A, et al. The Role of Inflammatory Cytokines in Cardiac Arrest[J]. J Intensive Care Med, 2020, 35(3): 219-224. doi: 10.1177/0885066618817518
[43] Cheng S, Gao W, Xu X, et al. Methylprednisolone sodium succinate reduces BBB disruption and inflammation in a model mouse of intracranial haemorrhage[J]. Brain Res Bull, 2016, 127: 226-233. doi: 10.1016/j.brainresbull.2016.10.007
[44] Adrie C, Adib-Conquy M, Laurent I, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a "sepsis-like" syndrome[J]. Circulation, 2002, 106(5): 562-568. doi: 10.1161/01.CIR.0000023891.80661.AD
[45] De Laere M, Sousa C, Meena M, et al. Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration through the Blood-Brain Barrier under Inflammatory Conditions In Vitro[J]. Mediators Inflamm, 2017, 2017: 6752756.
[46] Nguyen HM, di Lucente J, Chen YJ, et al. Biophysical basis for Kv1.3 regulation of membrane potential changes induced by P2X4-mediated calcium entry in microglia[J]. Glia, 2020, 68(11): 2377-2394. doi: 10.1002/glia.23847
[47] Badimon A, Strasburger HJ, Ayata P, et al. Negative feedback control of neuronal activity by microglia[J]. Nature, 2020, 586(7829): 417-423. doi: 10.1038/s41586-020-2777-8
[48] Canedo T, Portugal CC, Socodato R, et al. Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine[J]. Neuropsychopharmacology, 2021, 46(13): 2358-2370. doi: 10.1038/s41386-021-01139-7
[49] Muresanu DF, Sharma A, Tian ZR, et al. Nanowired drug delivery of antioxidant compound H-290/51 enhances neuroprotection in hyperthermia-induced neurotoxicity[J]. CNS Neurol Disord Drug Targets, 2012, 11(1): 50-64. doi: 10.2174/187152712799960736
[50] Sharma HS, Miclescu A, Wiklund L. Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain[J]. J Neural Transm(Vienna), 2011, 118(1): 87-114. doi: 10.1007/s00702-010-0486-4
[51] Hutin A, Levy Y, Lidouren F, et al. Resuscitative endovascular balloon occlusion of the aorta vs epinephrine in the treatment of non-traumatic cardiac arrest in swine[J]. Ann Intensive Care, 2021, 11(1): 81. doi: 10.1186/s13613-021-00871-z
[52] Putzer G, Martini J, Spraider P, et al. Adrenaline improves regional cerebral blood flow, cerebral oxygenation and cerebral metabolism during CPR in a porcine cardiac arrest model using low-flow extracorporeal support[J]. Resuscitation, 2021, 168: 151-159. doi: 10.1016/j.resuscitation.2021.07.036
[53] Manole MD, Foley LM, Hitchens TK, et al. Magnetic resonance imaging assessment of regional cerebral blood flow after asphyxial cardiac arrest in immature rats[J]. J Cereb Blood Flow Metab, 2009, 29(1): 197-205. doi: 10.1038/jcbfm.2008.112
[54] Lu H, Li S, Dai D, et al. Enhanced treatment of cerebral ischemia-Reperfusion injury by intelligent nanocarriers through the regulation of neurovascular units[J]. Acta Biomater, 2022, 147: 314-326. doi: 10.1016/j.actbio.2022.05.021
计量
- 文章访问数: 1058
- PDF下载数: 428
- 施引文献: 0