神经血管单位在心脏骤停后脑损伤中发挥的关键作用

许双, 麻艳楠, 刘茜, 等. 神经血管单位在心脏骤停后脑损伤中发挥的关键作用[J]. 临床急诊杂志, 2023, 24(9): 448-453. doi: 10.13201/j.issn.1009-5918.2023.09.002
引用本文: 许双, 麻艳楠, 刘茜, 等. 神经血管单位在心脏骤停后脑损伤中发挥的关键作用[J]. 临床急诊杂志, 2023, 24(9): 448-453. doi: 10.13201/j.issn.1009-5918.2023.09.002
XU Shuang, MA Yannan, LIU Qian, et al. The key role of neurovascular unit in brain injury after cardiac arrest[J]. J Clin Emerg, 2023, 24(9): 448-453. doi: 10.13201/j.issn.1009-5918.2023.09.002
Citation: XU Shuang, MA Yannan, LIU Qian, et al. The key role of neurovascular unit in brain injury after cardiac arrest[J]. J Clin Emerg, 2023, 24(9): 448-453. doi: 10.13201/j.issn.1009-5918.2023.09.002

神经血管单位在心脏骤停后脑损伤中发挥的关键作用

  • 基金项目:
    国家自然科学基金面上项目(No:82072137,81571866)
详细信息
    通讯作者: 孙鹏,E-mail:sp761397@sina.com

    Δ审校者

  • 中图分类号: R473

The key role of neurovascular unit in brain injury after cardiac arrest

More Information
  • 目前心脏骤停后脑损伤(post-cardiac arrest brain injury,PCABI)的病理生理机制研究尚不透彻,导致PCABI相关的治疗效果欠佳。神经血管单位(neurovascular unit,NVU)主要是由血管相关细胞、神经胶质细胞和神经元组成。NVU在调节脑血流量(cerebral blood flow,CBF)、维持血脑屏障((blood-brain barrier,BBB)的完整性和神经功能等方面具有重要作用。BBB功能障碍和CBF下降是导致PCABI的重要原因。本综述旨在探讨NVU结构和功能在PCABI中的潜在病理生理机制,从而找到切实有效的治疗靶点改善其预后。
  • 加载中
  • [1]

    Buunk G, van der Hoeven JG, Meinders AE. Cerebral blood flow after cardiac arrest[J]. Neth J Med, 2000, 57(3): 106-112. doi: 10.1016/S0300-2977(00)00059-0

    [2]

    Reis C, Akyol O, Araujo C, et al. Pathophysiology and the Monitoring Methodsfor Cardiac Arrest Associated Brain Injury[J]. Int J Mol Sci, 2017, 18(1): 129. doi: 10.3390/ijms18010129

    [3]

    Wang L, Xiong X, Zhang L, et al. Neurovascular Unit: A critical role in ischemic stroke[J]. CNS Neurosci Ther, 2021, 27(1): 7-16. doi: 10.1111/cns.13561

    [4]

    Sweeney MD, Kisler K, Montagne A, et al. The role of brain vasculature in neurodegenerative disorders[J]. Nat Neurosci, 2018, 21(10): 1318-1331. doi: 10.1038/s41593-018-0234-x

    [5]

    Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM, et al. Glial cells and energy balance[J]. J Mol Endocrinol, 2017, 58(1): R59-R71. doi: 10.1530/JME-16-0182

    [6]

    Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow[J]. Nature, 2010, 468(7321): 232-243. doi: 10.1038/nature09613

    [7]

    Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis[J]. Intensive Care Med, 2021, 47(12): 1393-1414. doi: 10.1007/s00134-021-06548-2

    [8]

    Sharma HS, Patnaik R, Sharma A, et al. The contribution of glial cells and water channel aquaporin-4 in the neuropathology of cardiac arrest is still ignored[J]. CNS Neurol Disord Drug Targets, 2013, 12(1): 3. doi: 10.2174/1871527311312010003

    [9]

    Shi K, Tian DC, Li ZG, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11): 1058-1066. doi: 10.1016/S1474-4422(19)30078-X

    [10]

    von Bernhardi R, Heredia F, Salgado N, et al. Microglia Function in the Normal Brain[J]. Adv Exp Med Biol, 2016, 949: 67-92.

    [11]

    Kono H, Rock KL. How dying cells alert the immune system to danger[J]. Nat Rev Immunol, 2008, 8(4): 279-289. doi: 10.1038/nri2215

    [12]

    Zhou Z, Hou J, Mo Y, et al. Geniposidic acid ameliorates spatial learning and memory deficits and alleviates neuroinflammation via inhibiting HMGB-1 and downregulating TLR4/2 signaling pathway in APP/PS1 mice[J]. Eur J Pharmacol, 2020, 869: 172857. doi: 10.1016/j.ejphar.2019.172857

    [13]

    Yao X, Jiang Q, Ding W, et al. Interleukin 4 inhibits high mobility group box-1 protein-mediated NLRP3 inflammasome formation by activating peroxisome proliferator-activated receptor-γ in astrocytes[J]. Biochem Biophys Res Commun, 2019, 509(2): 624-631. doi: 10.1016/j.bbrc.2018.11.145

    [14]

    Price BR, Norris CM, Sompol P, et al. An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia[J]. J Neurochem, 2018, 144(5): 644-650. doi: 10.1111/jnc.14273

    [15]

    Hasegawa-Ishii S, Inaba M, Umegaki H, et al. Endotoxemia-induced cytokine-mediated responses of hippocampal astrocytes transmitted by cells of the brain-immune interface[J]. Sci Rep, 2016, 6: 25457. doi: 10.1038/srep25457

    [16]

    Yamazaki Y, Kanekiyo T. Blood-Brain Barrier Dysfunction and the Pathogenesis of Alzheimer's Disease[J]. Int J Mol Sci, 2017, 18(9): 1965. doi: 10.3390/ijms18091965

    [17]

    Lee CH, Lee TK, Kim DW, et al. Relationship between Neuronal Damage/Death and Astrogliosis in the Cerebral Motor Cortex of Gerbil Models of Mild and Severe Ischemia and Reperfusion Injury[J]. Int J Mol Sci, 2022, 23(9): 5096. doi: 10.3390/ijms23095096

    [18]

    Ahn JH, Lee TK, Kim DW, et al. Therapeutic Hypothermia after Cardiac Arrest Attenuates Hindlimb Paralysis and Damage of Spinal Motor Neurons and Astrocytes through Modulating Nrf2/HO-1 Signaling Pathway in Rats[J]. Cells, 2023, 12(3): 414. doi: 10.3390/cells12030414

    [19]

    Giovannoni F, Quintana FJ. The Role of Astrocytes in CNS Inflammation[J]. Trends Immunol, 2020, 41(9): 805-819. doi: 10.1016/j.it.2020.07.007

    [20]

    He M, Dong H, Huang Y, et al. Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells[J]. Cell Physiol Biochem, 2016, 38(3): 859-870. doi: 10.1159/000443040

    [21]

    Parajuli B, Horiuchi H, Mizuno T, et al. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia[J]. Glia, 2015, 63(12): 2274-2284. doi: 10.1002/glia.22892

    [22]

    Geppert A, Zorn G, Karth GD, et al. Soluble selectins and the systemic inflammatory response syndrome after successful cardiopulmonary resuscitation[J]. Crit Care Med, 2000, 28(7): 2360-2365. doi: 10.1097/00003246-200007000-00030

    [23]

    Bro-Jeppesen J, Johansson PI, Hassager C, et al. Endothelial activation/injury and associations with severity of post-cardiac arrest syndrome and mortality after out-of-hospital cardiac arrest[J]. Resuscitation, 2016, 107(1): 71-79.

    [24]

    Lee RH, Wu CY, Citadin CT, et al. Activation of Neuropeptide Y2 Receptor Can Inhibit Global Cerebral Ischemia-Induced Brain Injury[J]. Neuromolecular Med, 2022, 24(2): 97-112. doi: 10.1007/s12017-021-08665-z

    [25]

    Wada T, Gando S, Ono Y, et al. Disseminated intravascular coagulation with the fibrinolytic phenotype predicts the outcome of patients with out-of-hospital cardiac arrest[J]. Thromb J, 2016, 14(1): 43. doi: 10.1186/s12959-016-0116-y

    [26]

    Zhu J, Li X, Yin J, et al. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats[J]. J Cereb Blood Flow Metab, 2018, 38(11): 1979-1992. doi: 10.1177/0271678X17726062

    [27]

    Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication: a scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke(Part Ⅱ)[J]. Int Emerg Nurs, 2010, 18(1): 8-28. doi: 10.1016/j.ienj.2009.07.001

    [28]

    Yemisci M, Gursoy-Ozdemir Y, Vural A, et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery[J]. Nat Med, 2009, 15(9): 1031-1037. doi: 10.1038/nm.2022

    [29]

    Tan EK, Chao YX, West A, et al. Parkinson disease and the immune system-associations, mechanisms and therapeutics[J]. Nat Rev Neurol, 2020, 16(6): 303-318. doi: 10.1038/s41582-020-0344-4

    [30]

    Kugler EC, Greenwood J, MacDonald RB. The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction[J]. Front Cell Dev Biol, 2021, 9: 732820. doi: 10.3389/fcell.2021.732820

    [31]

    Menon DK, Coles JP, Gupta AK, et al. Diffusion limited oxygen delivery following head injury[J]. Crit Care Med, 2004, 32(6): 1384-1390. doi: 10.1097/01.CCM.0000127777.16609.08

    [32]

    White BR, Ko TS, Morgan RW, et al. Low frequency power in cerebral blood flow is a biomarker of neurologic injury in the acute period after cardiac arrest[J]. Resuscitation, 2022, 178(1): 12-18.

    [33]

    Hoiland RL, Ainslie PN, Wellington CL, et al. Brain Hypoxia Is Associated With Neuroglial Injury in Humans Post-Cardiac Arrest[J]. Circ Res, 2021, 129(5): 583-597. doi: 10.1161/CIRCRESAHA.121.319157

    [34]

    Mazzoli CA, Chiarini V, Coniglio C, et al. Resuscitative Endovascular Balloon Occlusion of the Aorta(REBOA)in Non-Traumatic Cardiac Arrest: A Narrative Review of Known and Potential Physiological Effects[J]. J Clin Med, 2022, 11(3): 742. doi: 10.3390/jcm11030742

    [35]

    Li L, Poloyac SM, Watkins SC, et al. Cerebral microcirculatory alterations and the no-reflow phenomenon in vivo after experimental pediatric cardiac arrest[J]. J Cereb Blood Flow Metab, 2019, 39(5): 913-925. doi: 10.1177/0271678X17744717

    [36]

    Sekhon MS, Gooderham P, Menon DK, et al. The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest[J]. Crit Care Med, 2019, 47(7): 960-969. doi: 10.1097/CCM.0000000000003745

    [37]

    Yang Q, Huang Q, Hu Z, et al. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation[J]. Front Neurosci, 2019, 13: 1036. doi: 10.3389/fnins.2019.01036

    [38]

    Chen HS, Chen X, Li WT, et al. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery[J]. Acta Pharmacol Sin, 2018, 39(5): 669-682. doi: 10.1038/aps.2018.27

    [39]

    Madathil RJ, Hira RS, Stoeckl M, et al. Ischemia reperfusion injury as a modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation[J]. Resuscitation, 2016, 105: 85-91. doi: 10.1016/j.resuscitation.2016.04.009

    [40]

    Spoelstra-de Man A, Elbers P, Oudemans-van Straaten HM. Making sense of early high-dose intravenous vitamin C in ischemia/reperfusion injury[J]. Crit Care, 2018, 22(1): 70. doi: 10.1186/s13054-018-1996-y

    [41]

    Tobin MK, Bonds JA, Minshall RD, et al. Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here[J]. J Cereb Blood Flow Metab, 2014, 34(10): 1573-1584. doi: 10.1038/jcbfm.2014.130

    [42]

    Jou C, Shah R, Figueroa A, et al. The Role of Inflammatory Cytokines in Cardiac Arrest[J]. J Intensive Care Med, 2020, 35(3): 219-224. doi: 10.1177/0885066618817518

    [43]

    Cheng S, Gao W, Xu X, et al. Methylprednisolone sodium succinate reduces BBB disruption and inflammation in a model mouse of intracranial haemorrhage[J]. Brain Res Bull, 2016, 127: 226-233. doi: 10.1016/j.brainresbull.2016.10.007

    [44]

    Adrie C, Adib-Conquy M, Laurent I, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a "sepsis-like" syndrome[J]. Circulation, 2002, 106(5): 562-568. doi: 10.1161/01.CIR.0000023891.80661.AD

    [45]

    De Laere M, Sousa C, Meena M, et al. Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration through the Blood-Brain Barrier under Inflammatory Conditions In Vitro[J]. Mediators Inflamm, 2017, 2017: 6752756.

    [46]

    Nguyen HM, di Lucente J, Chen YJ, et al. Biophysical basis for Kv1.3 regulation of membrane potential changes induced by P2X4-mediated calcium entry in microglia[J]. Glia, 2020, 68(11): 2377-2394. doi: 10.1002/glia.23847

    [47]

    Badimon A, Strasburger HJ, Ayata P, et al. Negative feedback control of neuronal activity by microglia[J]. Nature, 2020, 586(7829): 417-423. doi: 10.1038/s41586-020-2777-8

    [48]

    Canedo T, Portugal CC, Socodato R, et al. Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine[J]. Neuropsychopharmacology, 2021, 46(13): 2358-2370. doi: 10.1038/s41386-021-01139-7

    [49]

    Muresanu DF, Sharma A, Tian ZR, et al. Nanowired drug delivery of antioxidant compound H-290/51 enhances neuroprotection in hyperthermia-induced neurotoxicity[J]. CNS Neurol Disord Drug Targets, 2012, 11(1): 50-64. doi: 10.2174/187152712799960736

    [50]

    Sharma HS, Miclescu A, Wiklund L. Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain[J]. J Neural Transm(Vienna), 2011, 118(1): 87-114. doi: 10.1007/s00702-010-0486-4

    [51]

    Hutin A, Levy Y, Lidouren F, et al. Resuscitative endovascular balloon occlusion of the aorta vs epinephrine in the treatment of non-traumatic cardiac arrest in swine[J]. Ann Intensive Care, 2021, 11(1): 81. doi: 10.1186/s13613-021-00871-z

    [52]

    Putzer G, Martini J, Spraider P, et al. Adrenaline improves regional cerebral blood flow, cerebral oxygenation and cerebral metabolism during CPR in a porcine cardiac arrest model using low-flow extracorporeal support[J]. Resuscitation, 2021, 168: 151-159. doi: 10.1016/j.resuscitation.2021.07.036

    [53]

    Manole MD, Foley LM, Hitchens TK, et al. Magnetic resonance imaging assessment of regional cerebral blood flow after asphyxial cardiac arrest in immature rats[J]. J Cereb Blood Flow Metab, 2009, 29(1): 197-205. doi: 10.1038/jcbfm.2008.112

    [54]

    Lu H, Li S, Dai D, et al. Enhanced treatment of cerebral ischemia-Reperfusion injury by intelligent nanocarriers through the regulation of neurovascular units[J]. Acta Biomater, 2022, 147: 314-326. doi: 10.1016/j.actbio.2022.05.021

  • 加载中
计量
  • 文章访问数:  1058
  • PDF下载数:  428
  • 施引文献:  0
出版历程
收稿日期:  2023-06-22
刊出日期:  2023-09-10

目录