心脏缺血再灌注损伤与线粒体质量控制

黄琪惠, 华天凤, 杨旻. 心脏缺血再灌注损伤与线粒体质量控制[J]. 临床急诊杂志, 2023, 24(9): 443-447. doi: 10.13201/j.issn.1009-5918.2023.09.001
引用本文: 黄琪惠, 华天凤, 杨旻. 心脏缺血再灌注损伤与线粒体质量控制[J]. 临床急诊杂志, 2023, 24(9): 443-447. doi: 10.13201/j.issn.1009-5918.2023.09.001
HUANG Qihui, HUA Tianfeng, YANG Min. Cardiac ischemia-reperfusion injury and mitochondrial quality control[J]. J Clin Emerg, 2023, 24(9): 443-447. doi: 10.13201/j.issn.1009-5918.2023.09.001
Citation: HUANG Qihui, HUA Tianfeng, YANG Min. Cardiac ischemia-reperfusion injury and mitochondrial quality control[J]. J Clin Emerg, 2023, 24(9): 443-447. doi: 10.13201/j.issn.1009-5918.2023.09.001

心脏缺血再灌注损伤与线粒体质量控制

详细信息

Cardiac ischemia-reperfusion injury and mitochondrial quality control

More Information
  • 心脏缺血再灌注(ischemia-reperfusion,I/R)损伤是心脏疾病中常见并发症,其发生机制复杂且尚未完全阐明。线粒体质量控制(mitochondrial quality control,MQC)是维持心肌细胞正常功能和适应能力的关键过程。MQC系统参与调节线粒体生物合成、线粒体动力学以及自噬环节,保护心肌细胞免受I/R损伤的影响。目前,MQC成为心脏I/R损伤的新型靶向治疗策略。本文通过概述MQC与心脏I/R损伤之间的联系及近期研究机制进展,旨在提供新的思路和研究方向,为心脏疾病的治疗和预防提供理论依据。
  • 加载中
  • 表 1  线粒体裂变的调控分子在心脏I/R中作用

    因子 调节分子机制 裂变
    作用
    I/R
    作用
    DUSP1↓[22] JNK/Mff↑ 裂变↑ I/R↓
    PGAM5↑ [23] DrpS637去磷酸化↑ 裂变↑ I/R↓
    KLF4↓[24] ROCK1/Drp1/ROS↑ 裂变↑ I/R↑
    Sirt1↓[25] Akt↓/Drp1↑,ROS↑ 裂变↑ I/R↑
    ZFP36L2↓[26] LncRNA PVT1↓ 裂变↑ I/R↓
    BI1↑[27] Syk/Nox2/Drp1 ↓ 裂变↓ I/R↓
    Hydralazine↑[28] Drp1 GTPase↓ 裂变↓ I/R↓
    下载: 导出CSV
  • [1]

    Panconesi R, Widmer J, Carvalho MF, et al. Mitochondria and ischemia reperfusion injury[J]. Curr Opin Organ Transplant, 2022, 27(5): 434-445. doi: 10.1097/MOT.0000000000001015

    [2]

    黄兰松, 刘燕, 黄照河. 细胞焦亡及其在心肌缺血再灌注损伤中作用机制[J]. 临床心血管病杂志, 2021, 37(2): 182-186. doi: 10.13201/j.issn.1001-1439.2021.02.019

    [3]

    田野. 活性氧在急性心肌梗死心肌再灌注损伤中的作用和机制[J]. 临床心血管病杂志, 2017, 33(7): 611-614. doi: 10.13201/j.issn.1001-1439.2017.07.001

    [4]

    Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury[J]. Acta Pharm Sin B, 2020, 10(10): 1866-1879. doi: 10.1016/j.apsb.2020.03.004

    [5]

    叶璐, 吕菁君, 魏捷, 等. C57BL/6小鼠心肺复苏后心肌细胞线粒体自噬及细胞凋亡的相互作用与调节机制的研究[J]. 临床急诊杂志, 2016, 17(1): 16-21. doi: 10.13201/j.issn.1009-5918.2016.01.004

    [6]

    Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies[J]. Nat Rev Drug Discov, 2018, 17(12): 865-886. doi: 10.1038/nrd.2018.174

    [7]

    Popov LD. Mitochondrial biogenesis: An update[J]. J Cell Mol Med, 2020, 24(9): 4892-4899. doi: 10.1111/jcmm.15194

    [8]

    Qi X, Wang J. Melatonin improves mitochondrial biogenesis through the AMPK/PGC1α pathway to attenuate ischemia/reperfusion-induced myocardial damage[J]. Aging(Albany NY), 2020, 12(8): 7299-7312.

    [9]

    Cai W, Liu L, Shi X, et al. Alox15/15-HpETE Aggravates Myocardial Ischemia-Reperfusion Injury by Promoting Cardiomyocyte Ferroptosis[J]. Circulation, 2023, 147(19): 1444-1460. doi: 10.1161/CIRCULATIONAHA.122.060257

    [10]

    Wan S, Cui Z, Wu L, et al. Ginsenoside Rd promotes omentin secretion in adipose through TBK1-AMPK to improve mitochondrial biogenesis via WNT5A/Ca2+ pathways in heart failure[J]. Redox Biol, 2023, 60: 102610. doi: 10.1016/j.redox.2023.102610

    [11]

    Yang J, He J, Ismail M, et al. HDAC inhibition induces autophagy and mitochondrial biogenesis to maintain mitochondrial homeostasis during cardiac ischemia/reperfusion injury[J]. J Mol Cell Cardiol, 2019, 130: 36-48. doi: 10.1016/j.yjmcc.2019.03.008

    [12]

    聂俊刚, 塔娜, 刘莉娟, 等. PGC1α对心肌缺血再灌注损伤的作用及其机制[J]. 中南大学学报(医学版), 2020, 45(10): 1155-1163. doi: 10.11817/j.issn.1672-7347.2020.190215

    [13]

    Zhang J, Ney P A. Reticulocyte mitophagy: monitoring mitochondrial clearance in a mammalian model[J]. Autophagy, 2010, 6(3): 405-408. doi: 10.4161/auto.6.3.11245

    [14]

    Tilokani L, Nagashima S, Paupe V, et al. Mitochondrial dynamics: overview of molecular mechanisms[J]. Essays Biochem, 2018, 62(3): 341-360. doi: 10.1042/EBC20170104

    [15]

    Wu J, Chen H, Qin J, et al. Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage[J]. Oxid Med Cell Longev, 2021, 2021: 8865762.

    [16]

    Ong S-B, Subrayan S, Lim S Y, et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury[J]. Circulation, 2010, 121(18): 2012-2022. doi: 10.1161/CIRCULATIONAHA.109.906610

    [17]

    Du J, Li H, Song J, et al. AMPK Activation Alleviates Myocardial Ischemia-Reperfusion Injury by Regulating Drp1-Mediated Mitochondrial Dynamics[J]. Front Pharmacol, 2022, 13: 862204. doi: 10.3389/fphar.2022.862204

    [18]

    Li L, Li J, Wang Q, et al. Shenmai Injection Protects Against Doxorubicin-Induced Cardiotoxicity via Maintaining Mitochondrial Homeostasis[J]. Front Pharmacol, 2020, 11: 815. doi: 10.3389/fphar.2020.00815

    [19]

    Lee KH, Ha SJ, Woo JS, et al. Exenatide Prevents Morphological and Structural Changes of Mitochondria Following Ischaemia-Reperfusion Injury[J]. Heart Lung Circ, 2017, 26(5): 519-523. doi: 10.1016/j.hlc.2016.08.007

    [20]

    Cai C, Guo Z, Chang X, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway[J]. Redox Biol, 2022, 52: 102288. doi: 10.1016/j.redox.2022.102288

    [21]

    Gao T, Shi R, Liu Z, et al. Ischemia/reperfusion-induced MiD51 upregulation recruits Drp1 to mitochondria and contributes to myocardial injury[J]. Biochem Biophys Res Commun, 2023, 665: 78-87. doi: 10.1016/j.bbrc.2023.05.013

    [22]

    Jin Q, Li R, Hu N, et al. DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways[J]. Redox Biol, 2018, 14: 576-587. doi: 10.1016/j.redox.2017.11.004

    [23]

    Zhu H, Tan Y, Du W, et al. Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control[J]. Redox Biol, 2021, 38: 101777. doi: 10.1016/j.redox.2020.101777

    [24]

    Li Y, Xiong Z, Jiang Y, et al. Klf4 deficiency exacerbates myocardial ischemia/reperfusion injury in mice via enhancing ROCK1/DRP1 pathway-dependent mitochondrial fission[J]. J Mol Cell Cardiol, 2023, 174: 115-132. doi: 10.1016/j.yjmcc.2022.11.009

    [25]

    Tao A, Xu X, Kvietys P, et al. Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction[J]. Int J Biochem Cell Biol, 2018, 105: 94-103. doi: 10.1016/j.biocel.2018.10.011

    [26]

    Wu F, Huang W, Tan Q, et al. ZFP36 L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1[J]. Cell Death Dis, 2021, 12(6): 614. doi: 10.1038/s41419-021-03876-5

    [27]

    Zhou H, Shi C, Hu S, et al. BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways[J]. Angiogenesis, 2018, 21(3): 599-615. doi: 10.1007/s10456-018-9611-z

    [28]

    Kalkhoran SB, Kriston-Vizi J, Hernandez-Resendiz S, et al. Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission[J]. Cardiovasc Res, 2022, 118(1): 282-294. doi: 10.1093/cvr/cvaa343

    [29]

    Adebayo M, Singh S, Singh AP, et al. Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis[J]. FASEB J, 2021, 35(6): e21620.

    [30]

    Rodríguez-Graciani KM, Chapa-Dubocq XR, MacMillan-Crow LA, et al. Association Between L-OPA1 Cleavage and Cardiac Dysfunction During Ischemia-Reperfusion Injury in Rats[J]. Cell Physiol Biochem, 2020, 54(6): 1101-1114. doi: 10.33594/000000303

    [31]

    Yang Y, Zhao L, Ma J. Penehyclidine hydrochloride preconditioning provides cardiac protection in a rat model of myocardial ischemia/reperfusion injury via the mechanism of mitochondrial dynamics mechanism[J]. Eur J Pharmacol, 2017, 813: 130-139. doi: 10.1016/j.ejphar.2017.07.031

    [32]

    Lai Q, Wu L, Dong S, et al. Inhibition of KMO Ameliorates Myocardial Ischemia Injury via Maintaining Mitochondrial Fusion and Fission Balance[J]. Int J Biol Sci, 2023, 19(10): 3077-3098. doi: 10.7150/ijbs.83392

    [33]

    Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nat Cell Biol, 2010, 12(2): 119-131. doi: 10.1038/ncb2012

    [34]

    Ji W, Wei S, Hao P, et al. Aldehyde Dehydrogenase 2 Has Cardioprotective Effects on Myocardial Ischaemia/Reperfusion Injury via Suppressing Mitophagy[J]. Front Pharmacol, 2016, 7: 101.

    [35]

    Daido S, Kanzawa T, Yamamoto A, et al. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells[J]. Cancer Res, 2004, 64(12): 4286-4293. doi: 10.1158/0008-5472.CAN-03-3084

    [36]

    Liu K, Zhao Q, Sun H, et al. BNIP3(BCL2 interacting protein 3) regulates pluripotency by modulating mitochondrial homeostasis via mitophagy[J]. Cell Death Dis, 2022, 13(4): 334. doi: 10.1038/s41419-022-04795-9

    [37]

    Zhang Y, Liu D, Hu H, et al. HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury[J]. Biomed Pharmacother, 2019, 120: 109464. doi: 10.1016/j.biopha.2019.109464

    [38]

    Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology[J]. Nat Cell Biol, 2018, 20(9): 1013-1022. doi: 10.1038/s41556-018-0176-2

    [39]

    Kubli DA, Quinsay MN, Huang C, et al. Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion[J]. Am J Physiol Heart Circ Physiol, 2008, 295(5): 2025-2031. doi: 10.1152/ajpheart.00552.2008

    [40]

    Elcocks H, Brazel AJ, McCarron KR, et al. FBXL4 ubiquitin ligase deficiency promotes mitophagy by elevating NIX levels[J]. EMBO J, 2023, 42(13): e112799. doi: 10.15252/embj.2022112799

    [41]

    Yang M, Linn BS, Zhang Y, et al. Mitophagy and mitochondrial integrity in cardiac ischemia-reperfusion injury[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(9): 2293-2302. doi: 10.1016/j.bbadis.2019.05.007

    [42]

    Ji H, Wang J, Muid D, et al. FUNDC1 activates the mitochondrial unfolded protein response to preserve mitochondrial quality control in cardiac ischemia/reperfusion injury[J]. Cell Signal, 2022, 92: 110249. doi: 10.1016/j.cellsig.2022.110249

    [43]

    Ban T, Ishihara T, Kohno H, et al. Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin[J]. Nat Cell Biol, 2017, 19(7): 856-863. doi: 10.1038/ncb3560

    [44]

    Zhang W, Tam J, Shinozaki K, et al. Increased Survival Time With SS-31 After Prolonged Cardiac Arrest in Rats[J]. Heart Lung Circ, 2019, 28(3): 505-508. doi: 10.1016/j.hlc.2018.01.008

  • 加载中
计量
  • 文章访问数:  988
  • PDF下载数:  1068
  • 施引文献:  0
出版历程
收稿日期:  2023-07-20
刊出日期:  2023-09-10

目录