栀子苷通过调控单核细胞表型改善小鼠盲肠结扎穿孔技术脓毒症模型预后

章德文, 丁娴, 王睿, 等. 栀子苷通过调控单核细胞表型改善小鼠盲肠结扎穿孔技术脓毒症模型预后[J]. 临床急诊杂志, 2023, 24(7): 352-358. doi: 10.13201/j.issn.1009-5918.2023.07.004
引用本文: 章德文, 丁娴, 王睿, 等. 栀子苷通过调控单核细胞表型改善小鼠盲肠结扎穿孔技术脓毒症模型预后[J]. 临床急诊杂志, 2023, 24(7): 352-358. doi: 10.13201/j.issn.1009-5918.2023.07.004
ZHANG Dewen, DING Xian, WANG Rui, et al. Geniposide improves the prognosis of cecal ligation and puncture sepsis model in mice by regulating monocyte phenotype[J]. J Clin Emerg, 2023, 24(7): 352-358. doi: 10.13201/j.issn.1009-5918.2023.07.004
Citation: ZHANG Dewen, DING Xian, WANG Rui, et al. Geniposide improves the prognosis of cecal ligation and puncture sepsis model in mice by regulating monocyte phenotype[J]. J Clin Emerg, 2023, 24(7): 352-358. doi: 10.13201/j.issn.1009-5918.2023.07.004

栀子苷通过调控单核细胞表型改善小鼠盲肠结扎穿孔技术脓毒症模型预后

详细信息

Geniposide improves the prognosis of cecal ligation and puncture sepsis model in mice by regulating monocyte phenotype

More Information
  • 目的 探讨不同剂量栀子苷治疗脓毒症的疗效和主要生物学机制。方法 雄性BALB/c小鼠通过盲肠结扎穿孔技术(cecal ligation and puncture,CLP)复制脓毒症模型。在生存实验中,动物被随机分为以下各组,每组20只:于CLP术后0 h、24 h经小鼠尾静脉分别注射栀子苷20 mg/kg、40 mg/kg或生理盐水(对照组);于CLP术后24 h经小鼠尾静脉注射栀子苷40 mg/kg或生理盐水(对照组)。观察不同组别的生存预后;并流式检测单核细胞CD16、MHC-Ⅱ、TLR2、TLR4表达水平;ELISA检测血清TNF-α、IL-1β、IL-6、IL-10浓度;Western Blot测定PPARγ浓度。结果 40 mg/kg栀子苷CLP后0 h和24 h静脉给药能显著改善脓毒症小鼠模型生存预后,小剂量(20 mg/kg)栀子苷和延迟给药(24 h)无显著获益。与对照组相比,有效剂量栀子苷能不同程度地全面抑制脓毒症小鼠血清细胞因子TNF-α、IL-1β、IL-6、IL-10浓度,差异有统计学意义(P < 0.05);能降低脓毒症小鼠24 h单核细胞CD16表达,差异有统计学意义(P < 0.05);能增加脓毒症小鼠24 h单核细胞MHCⅡ表达,差异有统计学意义(P < 0.05);对脓毒症小鼠24 h单核细胞TLR2、TLR4表达无显著影响,差异无统计学意义(P>0.05);能恢复脓毒症小鼠24 h单核细胞PPARγ蛋白活性(0.69±0.02 vs.0.44±0.02),差异有统计学意义(P < 0.05)。结论 早期大剂量栀子苷(40 mg/kg)可以通过调节单核细胞表型,调控细胞因子网络显著改善CLP小鼠脓毒症模型的生存预后。对PPARγ的正性作用可能是栀子苷上游的药理学机制。
  • 加载中
  • 图 1  栀子苷对小鼠CLP脓毒症模型死亡率的影响

    图 2  栀子苷对小鼠CLP脓毒症模型血清IL-1β、IL-6、IL-10、TNF-α浓度的影响

    图 3  CLP术后24 h外周血单核细胞CD16表达强度

    图 4  CLP术后24 h外周血CLASSⅡ+单核细胞比率

    图 5  CLP术后24 h外周血单核细胞TLR2表达强度

    图 6  CLP术后24 h外周血单核细胞TLR4表达强度

    图 7  CLP术后24 h外周血单核细胞PPARγ水平

  • [1]

    Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287

    [2]

    Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. doi: 10.1016/S0140-6736(19)32989-7

    [3]

    Cohen J. The immunopathogenesis of sepsis[J]. Nature, 2002, 420(6917): 885-891. doi: 10.1038/nature01326

    [4]

    Dellinger RP, Levy MM, Schorr CA, et al. 50 years of sepsis investigation/enlightenment among adults-the long and winding road[J]. Crit Care Med, 2021, 49(10): 1606-1625. doi: 10.1097/CCM.0000000000005203

    [5]

    Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181-1247. doi: 10.1007/s00134-021-06506-y

    [6]

    Rhee C, Klompas M. Sepsis trends: increasing incidence and decreasing mortality, or changing denominator?[J]. J Thorac Dis, 2020, 12(suppl 1): S89-S100.

    [7]

    Fajgenbaum DC, June CH. Cytokine storm[J]. N Engl J Med, 2020, 383(23): 2255-2273. doi: 10.1056/NEJMra2026131

    [8]

    Stolarski AE, Kim J, Zhang QY, et al. Cytokine drizzle-the rationale for abandoning cytokine storm[J]. Shock, 2021, 56(5): 667-672. doi: 10.1097/SHK.0000000000001769

    [9]

    Kox M, Waalders NJB, Kooistra EJ, et al. Cytokine levels in critically ill patients with COVID-19 and other conditions[J]. JAMA, 2020, 324(15): 1565-1567. doi: 10.1001/jama.2020.17052

    [10]

    van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis[J]. Immunity, 2021, 54(11): 2450-2464. doi: 10.1016/j.immuni.2021.10.012

    [11]

    Guan J, Wang Z, Liu X, et al. IL-6 and IL-10 closely correlate with bacterial bloodstream infection[J]. Iran J Immunol, 2020, 17(3): 185-203.

    [12]

    Pinheiro da Silva F, Aloulou M, Skurnik D, et al. CD16 promotesEscherichia colisepsis through an FcR gamma inhibitory pathway that prevents phagocytosis and facilitates inflammation[J]. Nat Med, 2007, 13(11): 1368-1374. doi: 10.1038/nm1665

    [13]

    Hazenbos WL, Gessner JE, Hofhuis FM, et al. Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RⅢ(CD16) deficient mice[J]. Immunity, 1996, 5(2): 181-188. doi: 10.1016/S1074-7613(00)80494-X

    [14]

    Monneret G, Venet F, Pachot A, et al. Monitoring immune dysfunctions in the septic patient: a new skin for the old ceremony[J]. Mol Med, 2008, 14(1-2): 64-78. doi: 10.2119/2007-00102.Monneret

    [15]

    Brunialti MK, Martins PS, Barbosa de Carvalho H, et al. TLR2, TLR4, CD14, CD11B, and CD11C expressions on monocytes surface and cytokine production in patients with sepsis, severe sepsis, and septic shock[J]. Shock, 2006, 25(4): 351-357. doi: 10.1097/01.shk.0000217815.57727.29

    [16]

    Martins PS, Brunialti MK, Martos LS, et al. Expression of cell surface receptors and oxidative metabolism modulation in the clinical continuum of sepsis[J]. Crit Care, 2008, 12(1): R25. doi: 10.1186/cc6801

  • 加载中

(7)

计量
  • 文章访问数:  1260
  • PDF下载数:  513
  • 施引文献:  0
出版历程
收稿日期:  2023-03-31
刊出日期:  2023-07-10

目录