蛋白质组学在急性冠脉综合征中的应用进展

曹浩然, 万智. 蛋白质组学在急性冠脉综合征中的应用进展[J]. 临床急诊杂志, 2023, 24(5): 272-276. doi: 10.13201/j.issn.1009-5918.2023.05.010
引用本文: 曹浩然, 万智. 蛋白质组学在急性冠脉综合征中的应用进展[J]. 临床急诊杂志, 2023, 24(5): 272-276. doi: 10.13201/j.issn.1009-5918.2023.05.010
CAO Haoran, WAN Zhi. Application progress of proteomics in acute coronary syndrome[J]. J Clin Emerg, 2023, 24(5): 272-276. doi: 10.13201/j.issn.1009-5918.2023.05.010
Citation: CAO Haoran, WAN Zhi. Application progress of proteomics in acute coronary syndrome[J]. J Clin Emerg, 2023, 24(5): 272-276. doi: 10.13201/j.issn.1009-5918.2023.05.010

蛋白质组学在急性冠脉综合征中的应用进展

  • 基金项目:
    四川省科技计划项目(No: 2021YFQ0062)
详细信息
    通讯作者: 万智,E-mail: 303680215@qq.com

    审校者

  • 中图分类号: R543.3

Application progress of proteomics in acute coronary syndrome

More Information
  • 急性冠脉综合征(acute coronary syndrome,ACS)是最危险的冠心病类型之一,有着较高的发病率和死亡率。传统的生物标志物在ACS的诊断、治疗、预等方面发挥了重要的作用。但随着对ACS复杂的病理生理学机制认识的深入,越来越多的新生物学标志物逐渐被发掘。近年来,随着蛋白质组学技术的发展,为ACS多标志物研究和新标志物的探索提供了便利。本文将对蛋白质组学相关技术及其在ACS发生风险中的应用、诊断、药物治疗、预后风险评估等方面作一综述。
  • 加载中
  • [1]

    Bhatt DL, Lopes RD, Harrington RA. Diagnosis and treatment of acute coronary syndromes: a review[J]. JAMA, 2022, 327(7): 662-675. doi: 10.1001/jama.2022.0358

    [2]

    Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association[J]. Circulation, 2022, 145(8): e153-e639.

    [3]

    Eisen A, Giugliano RP, Braunwald E. Updates on acute coronary syndrome: a review[J]. JAMA Cardiol, 2016, 1(6): 718-730. doi: 10.1001/jamacardio.2016.2049

    [4]

    Hygriv Rao B, Rama Raju NS, Srinivasa Raju CS, et al. Metabolic risk factors in first acute coronary syndrome(MERIFACS)Study[J]. Indian Heart J, 2022, 74(4): 275-281. doi: 10.1016/j.ihj.2022.07.002

    [5]

    Shiyovich A, Ovdat T, Klempfner R, et al. Worse outcomes of ACS patients without versus with traditional cardiovascular risk factors[J]. J Cardiol, 2022, 79(4): 515-521. doi: 10.1016/j.jjcc.2021.10.019

    [6]

    Bergmark BA, Mathenge N, Merlini PA, et al. Acute coronary syndromes[J]. Lancet, 2022, 399(10332): 1347-1358. doi: 10.1016/S0140-6736(21)02391-6

    [7]

    Garvey JL, Zegre-Hemsey J, Gregg R, et al. Electrocardiographic diagnosis of ST segment elevation myocardial infarction: an evaluation of three automated interpretation algorithms[J]. J Electrocardiol, 2016, 49(5): 728-732. doi: 10.1016/j.jelectrocard.2016.04.010

    [8]

    夏海云, 丁霞, 傅琳. 现场快速检测高敏肌钙蛋白在老年急性心肌梗死早期的临床诊断价值[J]. 临床急诊杂志, 2022, 23(1): 67-71. https://lcjz.whuhzzs.com/article/doi/10.13201/j.issn.1009-5918.2022.01.015

    [9]

    叶桂美, 肖勇强, 王茜. 血清IL-34和GLP-1及vaspin对老年急性心肌梗死患者心血管不良事件评估价值[J]. 临床急诊杂志, 2022, 23(6): 442-447. doi: 10.13201/j.issn.1009-5918.2022.06.013 https://lcjz.whuhzzs.com/article/doi/10.13201/j.issn.1009-5918.2022.06.013

    [10]

    Xie Y, Zhang HZ, Huang TQ. Quantitative proteomics reveal three potential biomarkers for risk assessment of acute myocardial infarction[J]. Bioengineered, 2022, 13(3): 4939-4950. doi: 10.1080/21655979.2022.2037365

    [11]

    Hristova VA, Chan DW. Cancer biomarker discovery and translation: proteomics and beyond[J]. Expert Rev Proteomics, 2019, 16(2): 93-103. doi: 10.1080/14789450.2019.1559062

    [12]

    Deng T, Liu YG, Gael A, et al. Study on proteomics-based aortic dissection molecular markers using iTRAQ combined with label free techniques[J]. Front Physiol, 2022, 13: 862732. doi: 10.3389/fphys.2022.862732

    [13]

    Shin M, Mun S, Park SH, et al. Serum biomarker discovery related to pathogenesis in acute coronary syndrome by proteomic approach[J]. Biosci Rep, 2021, 41(6): BSR20210344. doi: 10.1042/BSR20210344

    [14]

    Kelly RT. Single-cell proteomics: progress and prospects[J]. Mol Cell Proteom, 2020, 19(11): 1739-1748. doi: 10.1074/mcp.R120.002234

    [15]

    Letunica N, van Den Helm S, McCafferty C, et al. Proteomics in thrombosis and hemostasis[J]. Thromb Haemost, 2022, 122(7): 1076-1084. doi: 10.1055/a-1690-8897

    [16]

    Gao WM. Two-dimensional difference gel electrophoresis: a gel-based proteomic approach for protein analysis[J]. MethodsMol Biol, 2020, 2102: 163-176.

    [17]

    Noor Z, Ahn SB, Baker MS, et al. Mass spectrometry-based protein identification in proteomics-a review[J]. Brief Bioinform, 2021, 22(2): 1620-1638. doi: 10.1093/bib/bbz163

    [18]

    Len o J, Jadeja S, Naplekov DK, et al. Reversed-phase liquid chromatography of peptides for bottom-up proteomics: a tutorial[J]. J Proteome Res, 2022, 21(12): 2846-2892. doi: 10.1021/acs.jproteome.2c00407

    [19]

    Qi ZF, Yuan SH, Zhou XX, et al. Isobaric tags for relative and absolute quantitation-based quantitative serum proteomics analysis in ischemic stroke patients with hemorrhagic transformation[J]. Front Cell Neurosci, 2021, 15: 710129. doi: 10.3389/fncel.2021.710129

    [20]

    Lee PY, Saraygord-Afshari N, Low TY. The evolution of two-dimensional gel electrophoresis-from proteomics to emerging alternative applications[J]. J Chromatogr A, 2020, 1615: 460763. doi: 10.1016/j.chroma.2019.460763

    [21]

    Rotello RJ, Veenstra TD. Mass spectrometry techniques: principles and practices for quantitative proteomics[J]. Curr Protein Pept Sci, 2021, 22(2): 121-133. doi: 10.2174/1389203721666200921153513

    [22]

    Lapcik P, Vesela B, Potesil D, et al. DiaPASEF proteotype analysis indicates changes in cell growth and metabolic switch induced by caspase-9 inhibition in chondrogenic cells[J]. Proteomics, 2023: e2200408. doi: 10.1002/pmic.202200408

    [23]

    Le X, Mu JH, Peng WY, et al. DNA methylation downregulated ZDHHC1 suppresses tumor growth by altering cellular metabolism and inducing oxidative/ER stress-mediated apoptosis and pyroptosis[J]. Theranostics, 2020, 10(21): 9495-9511. doi: 10.7150/thno.45631

    [24]

    Kang C, Huh S, Nam D, et al. Novel online three-dimensional separation expands the detectable functional landscape of cellular phosphoproteome[J]. Anal Chem, 2022, 94(35): 12185-12195. doi: 10.1021/acs.analchem.2c02641

    [25]

    Li XP, Yao JH, Hu JY, et al. iTRAQ-based proteomics of testicular interstitial fluid during aging in mice[J]. Theriogenology, 2021, 175: 44-53. doi: 10.1016/j.theriogenology.2021.08.034

    [26]

    Zelfani S, Boudiche S, Manai H, et al. Predictors of acute coronary syndrome in pre hospital patients with chest pain[J]. Tunis Med, 2020, 98(1): 55-59.

    [27]

    Maguire PB, Parsons ME, Szklanna PB, et al. Comparative platelet releasate proteomic profiling of acute coronary syndrome versus stable coronary artery disease[J]. Front Cardiovasc Med, 2020, 7: 101. doi: 10.3389/fcvm.2020.00101

    [28]

    Htun NM, Magliano DJ, Zhang ZY, et al. Prediction of acute coronary syndromes by urinary proteome analysis[J]. PLoS One, 2017, 12(3): e0172036. doi: 10.1371/journal.pone.0172036

    [29]

    Yin XY, Subramanian S, Hwang SJ, et al. Protein biomarkers of new-onset cardiovascular disease: prospective study from the systems approach to biomarker research in cardiovascular disease initiative[J]. Arterioscler Thromb Vasc Biol, 2014, 34(4): 939-945. doi: 10.1161/ATVBAHA.113.302918

    [30]

    Ni XN, Yan SB, Zhang K, et al. Serum complement C1q level is associated with acute coronary syndrome[J]. Mol Immunol, 2020, 120: 130-135. doi: 10.1016/j.molimm.2020.02.012

    [31]

    Chaulin AM. False-positive causes in serum cardiac troponin levels[J]. J Clin Med Res, 2022, 14(2): 80-87. doi: 10.14740/jocmr4664

    [32]

    Shin M, Park SH, Mun S, et al. Biomarker discovery of acute coronary syndrome using proteomic approach[J]. Molecules, 2021, 26(4): 1136. doi: 10.3390/molecules26041136

    [33]

    Mohamed Bakrim N, Mohd Shah ANS, Talib NA, et al. Identification of haptoglobin as a potential biomarker in young adults with acute myocardial infarction by proteomic analysis[J]. Malays J Med Sci, 2020, 27(2): 64-76.

    [34]

    Das R, Ganapathy S, Settle M, et al. Plasminogen promotes macrophage phagocytosis in mice[J]. Blood, 2014, 124(5): 679-688. doi: 10.1182/blood-2014-01-549659

    [35]

    Plow EF, Hoover-Plow J. The functions of plasminogen in cardiovascular disease[J]. Trends Cardiovasc Med, 2004, 14(5): 180-186. doi: 10.1016/j.tcm.2004.04.001

    [36]

    Bavia L, Lidani KCF, Andrade FA, et al. Complement activation in acute myocardial infarction: an early marker of inflammation and tissue injury?[J]. Immunol Lett, 2018, 200: 18-25. doi: 10.1016/j.imlet.2018.06.006

    [37]

    Jaberi N, Soleimani A, Pashirzad M, et al. Role of thrombin in the pathogenesis of atherosclerosis[J]. J Cell Biochem, 2019, 120(4): 4757-4765. doi: 10.1002/jcb.27771

    [38]

    Zou LL, Wang XB, Guo ZG, et al. Differential urinary proteomics analysis of myocardial infarction using iTRAQ quantification[J]. Mol Med Rep, 2019, 19(5): 3972-3988.

    [39]

    Kamran H, Jneid H, Kayani WT, et al. Oral antiplatelet therapy after acute coronary syndrome: a review[J]. JAMA, 2021, 325(15): 1545-1555. doi: 10.1001/jama.2021.0716

    [40]

    Mateos-Cáceres PJ, Macaya C, Azcona L, et al. Different expression of proteins in platelets from aspirin-resistant and aspirin-sensitive patients[J]. Thromb Haemost, 2010, 103(1): 160-170. doi: 10.1160/TH09-05-0290

    [41]

    López-Farré AJ, Mateos-Cáceres PJ, Sacristán D, et al. Relationship between vitamin D binding protein and aspirin resistance in coronary ischemic patients: a proteomic study[J]. J Proteome Res, 2007, 6(7): 2481-2487. doi: 10.1021/pr060600i

    [42]

    Hung J, Roos A, Kadesj E, et al. Performance of the GRACE 2.0 score in patients with type 1 and type 2 myocardial infarction[J]. Eur Heart J, 2021, 42(26): 2552-2561. doi: 10.1093/eurheartj/ehaa375

    [43]

    Grinberg T, Bental T, Hammer Y, et al. Management and outcome across the spectrum of high-risk patients with myocardial infarction according to the thrmobolysis in myocardial infarction(TIMI)risk-score for secondary prevention[J]. Clin Cardiol, 2021, 44(11): 1535-1542.

    [44]

    Dregoesc MI, Ţigu AB, Bekkering S, et al. Relation between plasma proteomics analysis and major adverse cardiovascular events in patients with stable coronary artery disease[J]. Front Cardiovasc Med, 2022, 9: 731325.

    [45]

    Skau E, Henriksen E, Wagner P, et al. GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction[J]. Eur J Prev Cardiol, 2017, 24(15): 1576-1583.

    [46]

    Dong SY, Sun XN, Zeng Q, et al. Proteomic analysis of adverse outcomes in patients with acute coronary syndromes[J]. Clin Chim Acta, 2013, 416: 60-66.

  • 加载中
计量
  • 文章访问数:  293
  • PDF下载数:  131
  • 施引文献:  0
出版历程
收稿日期:  2022-12-16
刊出日期:  2023-05-10

目录