急性胰腺炎的细胞发病机制研究进展

侯文杰, 王美堂. 急性胰腺炎的细胞发病机制研究进展[J]. 临床急诊杂志, 2023, 24(5): 266-271. doi: 10.13201/j.issn.1009-5918.2023.05.009
引用本文: 侯文杰, 王美堂. 急性胰腺炎的细胞发病机制研究进展[J]. 临床急诊杂志, 2023, 24(5): 266-271. doi: 10.13201/j.issn.1009-5918.2023.05.009
HOU Wenjie, WANG Meitang. Advances in cellular pathogenesis of acute pancreatitis[J]. J Clin Emerg, 2023, 24(5): 266-271. doi: 10.13201/j.issn.1009-5918.2023.05.009
Citation: HOU Wenjie, WANG Meitang. Advances in cellular pathogenesis of acute pancreatitis[J]. J Clin Emerg, 2023, 24(5): 266-271. doi: 10.13201/j.issn.1009-5918.2023.05.009

急性胰腺炎的细胞发病机制研究进展

  • 基金项目:
    海军军医大学第一附属医院“234学科攀峰计划”项目(No: 2020YXK038)
详细信息
    通讯作者: 王美堂,E-mail:wmt88@sina.com

    审校者

  • 中图分类号: R657.51

Advances in cellular pathogenesis of acute pancreatitis

More Information
  • 急性胰腺炎(AP)是急诊常见的胰腺炎症性疾病,全球发病率约为34/10万,重症患者预后较差,病死率可达20%~40%。AP的发病机制尚未完全阐明,近年来研究发现,除胰蛋白酶原异常激活外,病理性钙信号、线粒体功能障碍、内质网应激、自噬受损等细胞事件在AP的发生发展中具有重要作用。目前AP的治疗主要是液体复苏、器官支持和并发症处理等,尚无特效治疗药物,了解AP细胞发病机制有助于为其治疗提供新思路,开发新靶点。因此,本文旨在对AP的细胞发病机制作一综述,为其治疗提供新思路。
  • 加载中
  • [1]

    范正阳, 吴东. 急性胰腺炎早期抗炎治疗研究进展[J]. 内科急危重症杂志, 2022, 28(1): 11-14.

    [2]

    Lee PJ, Papachristou GI. New insights into acute pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 479-496. doi: 10.1038/s41575-019-0158-2

    [3]

    Bang JY, Wilcox CM, Arnoletti JP, et al. Superiority of endoscopic interventions over minimally invasive surgery for infected necrotizing pancreatitis: meta-analysis of randomized trials[J]. Dig Endosc, 2020, 32(3): 298-308. doi: 10.1111/den.13470

    [4]

    Zhi MM, Zhu XY, Lugea A, et al. Incidence of new onset diabetes mellitus secondary to acute pancreatitis: a systematic review and meta-analysis[J]. Front Physiol, 2019, 10: 637. doi: 10.3389/fphys.2019.00637

    [5]

    Huang W, de la Iglesia-García D, Baston-Rey I, et al. Exocrine pancreatic insufficiency following acute pancreatitis: systematic review and meta-analysis[J]. Dig Dis Sci, 2019, 64(7): 1985-2005. doi: 10.1007/s10620-019-05568-9

    [6]

    Petrov MS, Yadav D. Global epidemiology and holistic prevention of pancreatitis[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(3): 175-184. doi: 10.1038/s41575-018-0087-5

    [7]

    Boxhoorn L, Voermans RP, Bouwense SA, et al. Acute pancreatitis[J]. Lancet, 2020, 396(10252): 726-734. doi: 10.1016/S0140-6736(20)31310-6

    [8]

    Gukovskaya AS, Gorelick FS, Groblewski GE, et al. Recent insights into the pathogenic mechanism of pancreatitis: role of acinar cell organelle disorders[J]. Pancreas, 2019, 48(4): 459-470. doi: 10.1097/MPA.0000000000001298

    [9]

    Pallagi P, Madácsy T, Varga Á, et al. Intracellular Ca2+signalling in the pathogenesis of acute pancreatitis: recent advances and translational perspectives[J]. Int J Mol Sci, 2020, 21(11): 4005. doi: 10.3390/ijms21114005

    [10]

    Diszházi G, Magyar Zé, Lisztes E, et al. TRPM4 links calcium signaling to membrane potential in pancreatic acinar cells[J]. J Biol Chem, 2021, 297(3): 101015. doi: 10.1016/j.jbc.2021.101015

    [11]

    Kim SH, Park Y, Lim JW, et al. Effect of docosahexaenoic acid on Ca2+signaling pathways in cerulein-treated pancreatic acinar cells, determined by RNA-sequencing analysis[J]. Nutrients, 2019, 11(7): 1445. doi: 10.3390/nu11071445

    [12]

    Kim KM, Rana A, Park CY. Orai1 inhibitor STIM2β regulates myogenesis by controlling SOCE dependent transcriptional factors[J]. Sci Rep, 2019, 9(1): 10794. doi: 10.1038/s41598-019-47259-5

    [13]

    Yu F, Machaca K. The STIM1 phosphorylation Saga[J]. Cell Calcium, 2022, 103: 102551. doi: 10.1016/j.ceca.2022.102551

    [14]

    Romac JM, Shahid RA, Swain SM, et al. Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis[J]. Nat Commun, 2018, 9(1): 1715. doi: 10.1038/s41467-018-04194-9

    [15]

    Lai A, Cox CD, Chandra Sekar N, et al. Mechanosensing by Piezo1 and its implications for physiology and various pathologies[J]. Biol Rev Camb Philos Soc, 2022, 97(2): 604-614. doi: 10.1111/brv.12814

    [16]

    Swain SM, Romac JM, Shahid RA, et al. TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation[J]. J Clin Invest, 2020, 130(5): 2527-2541. doi: 10.1172/JCI134111

    [17]

    Han TY, Cheng T, Liu BF, et al. Evaluation of the prognostic value of red cell distribution width to total serum calcium ratio in patients with acute pancreatitis[J]. Gastroenterol Res Pract, 2021, 2021: 6699421.

    [18]

    Barakat MT, Khalid A, Yu M, et al. A review of the rationale for the testing of the calcineurin inhibitor tacrolimus for post-ERCP pancreatitis prevention[J]. Pancreatology, 2022, 22(6): 678-682. doi: 10.1016/j.pan.2022.07.003

    [19]

    Huang W, Cane MC, Mukherjee R, et al. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1, 4, 5-trisphosphate receptor-mediated Ca2+ release[J]. Gut, 2017, 66(2): 301-313. doi: 10.1136/gutjnl-2015-309363

    [20]

    Du WY, Liu G, Shi N, et al. A microRNA checkpoint for Ca2+ signaling and overload in acute pancreatitis[J]. Mol Ther, 2022, 30(4): 1754-1774. doi: 10.1016/j.ymthe.2022.01.033

    [21]

    Waldron RT, Chen YF, Pham H, et al. The Orai Ca2+ channel inhibitor CM4620 targets both parenchymal and immune cells to reduce inflammation in experimental acute pancreatitis[J]. J Physiol, 2019, 597(12): 3085-3105. doi: 10.1113/JP277856

    [22]

    Saluja A, Dudeja V, Dawra R, et al. Early intra-acinar events in pathogenesis of pancreatitis[J]. Gastroenterology, 2019, 156(7): 1979-1993. doi: 10.1053/j.gastro.2019.01.268

    [23]

    Hirota M, Ohmuraya M, Hashimoto D, et al. Roles of autophagy and pancreatic secretory trypsin inhibitor in trypsinogen activation in acute pancreatitis[J]. Pancreas, 2020, 49(4): 493-497. doi: 10.1097/MPA.0000000000001519

    [24]

    Wang JH, Wang LC, Zhang XF, et al. Cathepsin B aggravates acute pancreatitis by activating the NLRP3 inflammasome and promoting the caspase-1-induced pyroptosis[J]. Int Immunopharmacol, 2021, 94: 107496. doi: 10.1016/j.intimp.2021.107496

    [25]

    Talukdar R, Sareen A, Zhu HY, et al. Release of cathepsin B in cytosol causes cell death in acute pancreatitis[J]. Gastroenterology, 2016, 151(4): 747-758. e5. doi: 10.1053/j.gastro.2016.06.042

    [26]

    Boonchan M, Arimochi H, Otsuka K, et al. Necroptosis protects against exacerbation of acute pancreatitis[J]. Cell Death Dis, 2021, 12(6): 601. doi: 10.1038/s41419-021-03847-w

    [27]

    Duan PY, Ma Y, Li XN, et al. Inhibition of RIPK1-dependent regulated acinar cell necrosis provides protection against acute pancreatitis via the RIPK1/NF-κB/AQP8 pathway[J]. Exp Mol Med, 2019, 51(8): 1-17.

    [28]

    Sun BS, Chen Z, Chi Q, et al. Endogenous tRNA-derived small RNA(tRF3-Thr-AGT)inhibits ZBP1/NLRP3 pathway-mediated cell pyroptosis to attenuate acute pancreatitis(AP)[J]. J Cell Mol Med, 2021, 25(22): 10441-10453. doi: 10.1111/jcmm.16972

    [29]

    Wu JX, Zhang JT, Zhao JP, et al. Treatment of severe acute pancreatitis and related lung injury by targeting gasdermin D-mediated pyroptosis[J]. Front Cell Dev Biol, 2021, 9: 780142. doi: 10.3389/fcell.2021.780142

    [30]

    Sendler M, Weiss FU, Golchert J, et al. Cathepsin B-mediated activation of trypsinogen in endocytosing macrophages increases severity of pancreatitis in mice[J]. Gastroenterology, 2018, 154(3): 704-718. e10. doi: 10.1053/j.gastro.2017.10.018

    [31]

    Farooq A, Hernandez L, Swain SM, et al. Initiation and severity of experimental pancreatitis are modified by phosphate[J]. Am J Physiol Gastrointest Liver Physiol, 2022, 322(6): G561-G570. doi: 10.1152/ajpgi.00022.2022

    [32]

    Vanasco V, Ropolo A, Grasso D, et al. Mitochondrial dynamics and VMP1-related selective mitophagy in experimental acute pancreatitis[J]. Front Cell Dev Biol, 2021, 9: 640094. doi: 10.3389/fcell.2021.640094

    [33]

    Tóth E, Maléth J, Závogyán N, et al. Novel mitochondrial transition pore inhibitor N-methyl-4-isoleucine cyclosporin is a new therapeutic option in acute pancreatitis[J]. J Physiol, 2019, 597(24): 5879-5898. doi: 10.1113/JP278517

    [34]

    Patel P, Mendoza A, Robichaux DJ, et al. Inhibition of the anti-apoptotic bcl-2 family by BH3 mimetics sensitize the mitochondrial permeability transition pore through Baxand bak[J]. Front Cell Dev Biol, 2021, 9: 765973. doi: 10.3389/fcell.2021.765973

    [35]

    Zhang J, Huang WG, He QK, et al. PINK1/PARK2 dependent mitophagy effectively suppresses NLRP3 inflammasome to alleviate acute pancreatitis[J]. Free Radic Biol Med, 2021, 166: 147-164. doi: 10.1016/j.freeradbiomed.2021.02.019

    [36]

    Hunt EG, Andrews AM, Larsen SR, et al. The ER-mitochondria interface as a dynamic hub for T cell efficacy in solid tumors[J]. Front Cell Dev Biol, 2022, 10: 867341. doi: 10.3389/fcell.2022.867341

    [37]

    Li H, Wen W, Luo J. Targeting endoplasmic reticulum stress as an effective treatment for alcoholic pancreatitis[J]. Biomedicines, 2022, 10(1): 108. doi: 10.3390/biomedicines10010108

    [38]

    Lukas J, Pospech J, Oppermann C, et al. Role of endoplasmic reticulum stress and protein misfolding in disorders of the liver and pancreas[J]. Adv Med Sci, 2019, 64(2): 315-323. doi: 10.1016/j.advms.2019.03.004

    [39]

    Lebeau P, Byun JH, Yousof T, et al. Pharmacologic inhibition of S1P attenuates ATF6 expression, causes ER stress and contributes to apoptotic cell death[J]. Toxicol Appl Pharmacol, 2018, 349: 1-7. doi: 10.1016/j.taap.2018.04.020

    [40]

    He J, Ma MM, Li DM, et al. Sulfiredoxin-1 attenuates injury and inflammation in acute pancreatitis through the ROS/ER stress/Cathepsin B axis[J]. Cell Death Dis, 2021, 12(7): 626. doi: 10.1038/s41419-021-03923-1

    [41]

    Han X, Li B, Bao JP, et al. Endoplasmic reticulum stress promoted acinar cell necroptosis in acute pancreatitis through cathepsinB-mediated AP-1 activation[J]. Front Immunol, 2022, 13: 968639. doi: 10.3389/fimmu.2022.968639

    [42]

    Wu HX, Li H, Wen W, et al. MANF protects pancreatic acinar cells against alcohol-induced endoplasmic reticulum stress and cellular injury[J]. J Hepatobiliary Pancreat Sci, 2021, 28(10): 883-892. doi: 10.1002/jhbp.928

    [43]

    Cárdenas-Jaén K, Vaillo-Rocamora A, Gracia Á, et al. Simvastatin in the prevention of recurrent pancreatitis: design and rationale of a multicenter triple-blind randomized controlled trial, the SIMBA trial[J]. Front Med(Lausanne), 2020, 7: 494.

    [44]

    Iwahashi K, Hikita H, Makino Y, et al. Autophagy impairment in pancreatic acinar cells causes zymogen granule accumulation and pancreatitis[J]. Biochem Biophys Res Commun, 2018, 503(4): 2576-2582. doi: 10.1016/j.bbrc.2018.07.018

    [45]

    Mercer TJ, Ohashi Y, Boeing S, et al. Phosphoproteomic identification of ULK substrates reveals VPS15-dependent ULK/VPS34 interplay in the regulation of autophagy[J]. EMBO J, 2021, 40(14): e105985. doi: 10.15252/embj.2020105985

    [46]

    Yan RL, Luan CL, Liao CC, et al. Long noncoding RNA BCRP3 stimulates VPS34 and autophagy activities to promote protein homeostasis and cell survival[J]. J Biomed Sci, 2022, 29(1): 30. doi: 10.1186/s12929-022-00815-0

    [47]

    Li HY, Lin YJ, Zhang L, et al. Autophagy in intestinal injury caused by severe acute pancreatitis[J]. Chin Med J(Engl), 2021, 134(21): 2547-2549.

    [48]

    Piplani H, Marek-Iannucci S, Sin J, et al. Simvastatin induces autophagic flux to restore cerulein-impaired phagosome-lysosome fusion in acute pancreatitis[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(11): 165530. doi: 10.1016/j.bbadis.2019.08.006

    [49]

    Yuan XH, Wu J, Guo X, et al. Autophagy in acute pancreatitis: organelle interaction and microRNA regulation[J]. Oxid Med Cell Longev, 2021, 2021: 8811935.

    [50]

    Iwama H, Mehanna S, Imasaka M, et al. Cathepsin B and D deficiency in the mouse pancreas induces impaired autophagy and chronic pancreatitis[J]. Sci Rep, 2021, 11(1): 6596. doi: 10.1038/s41598-021-85898-9

    [51]

    Feng DC, Park O, Radaeva S, et al. Interleukin-22 ameliorates cerulein-induced pancreatitis in mice by inhibiting the autophagic pathway[J]. Int J Biol Sci, 2012, 8(2): 249-257. doi: 10.7150/ijbs.3967

    [52]

    Choi S, Kim H. The remedial potential of lycopene in pancreatitis through regulation of autophagy[J]. Int J Mol Sci, 2020, 21(16): 5775. doi: 10.3390/ijms21165775

    [53]

    Pupyshev AB, Klyushnik TP, Akopyan AA, et al. Disaccharide trehalose in experimental therapies for neurodegenerative disorders: molecular targets and translational potential[J]. Pharmacol Res, 2022, 183: 106373. doi: 10.1016/j.phrs.2022.106373

  • 加载中
计量
  • 文章访问数:  403
  • PDF下载数:  171
  • 施引文献:  0
出版历程
收稿日期:  2022-06-10
刊出日期:  2023-05-10

目录