心肺复苏后机体免疫功能的变化

靳贝贝, 龚平. 心肺复苏后机体免疫功能的变化[J]. 临床急诊杂志, 2022, 23(11): 759-763. doi: 10.13201/j.issn.1009-5918.2022.11.004
引用本文: 靳贝贝, 龚平. 心肺复苏后机体免疫功能的变化[J]. 临床急诊杂志, 2022, 23(11): 759-763. doi: 10.13201/j.issn.1009-5918.2022.11.004
JIN Beibei, GONG Ping. Changes in immune function after cardiopulmonary resuscitation[J]. J Clin Emerg, 2022, 23(11): 759-763. doi: 10.13201/j.issn.1009-5918.2022.11.004
Citation: JIN Beibei, GONG Ping. Changes in immune function after cardiopulmonary resuscitation[J]. J Clin Emerg, 2022, 23(11): 759-763. doi: 10.13201/j.issn.1009-5918.2022.11.004

心肺复苏后机体免疫功能的变化

详细信息
    通讯作者: 龚平,E-mail:gongp828@sina.cn

    Δ审校者

  • 中图分类号: R541.78

Changes in immune function after cardiopulmonary resuscitation

More Information
  • 心肺复苏后全身缺血/再灌注可引起机体免疫功能的剧烈变化,并影响心搏骤停后综合征的发展和预后。本文对心肺复苏后参与固有免疫的血脑屏障、免疫细胞、补体、相关的模式识别受体以及参与适应性免疫的T淋巴细胞亚群的变化及其对缺血/再灌注损伤及预后的影响进行综述。
  • 加载中
  • [1]

    Tomar N, De RK. A brief outline of the immune system[J]. Methods Mol Biol, 2014, 1184: 3-12.

    [2]

    Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis[J]. Intensive Care Med, 2021, 47(12): 1393-1414. doi: 10.1007/s00134-021-06548-2

    [3]

    Hajal C, Le Roi B, Kamm RD, et al. Biology and Models of the Blood-Brain Barrier[J]. Annu Rev Biomed Eng, 2021, 23: 359-384. doi: 10.1146/annurev-bioeng-082120-042814

    [4]

    Sweeney MD, Zhao Z, Montagne A, et al. Blood-Brain Barrier: From Physiology to Disease and Back[J]. Physiol Rev, 2019, 99(1): 21-78. doi: 10.1152/physrev.00050.2017

    [5]

    Hoenderdos K, Lodge KM, Hirst RA, et al. Hypoxia upregulates neutrophil degranulation and potential for tissue injury[J]. Thorax, 2016, 71(11): 1030-1038. doi: 10.1136/thoraxjnl-2015-207604

    [6]

    Adrie C, Adib-Conquy M, Laurent I, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a "sepsis-like" syndrome[J]. Circulation, 2002, 106(5): 562-568. doi: 10.1161/01.CIR.0000023891.80661.AD

    [7]

    Liew PX, Kubes P. The Neutrophil's Role During Health and Disease[J]. Physiol Rev, 2019, 99(2): 1223-1248. doi: 10.1152/physrev.00012.2018

    [8]

    王玲, 龚平. 冷诱导RNA结合蛋白在炎症和缺血-再灌注损伤中的研究进展[J]. 中华急诊医学杂志, 2020, 29(9): 1250-1253. doi: 10.3760/cma.j.issn.1671-0282.2020.09.024

    [9]

    梁霜霜, 龚平. 中性粒细胞胞外诱捕网在急危重症中的研究进展[J]. 中华急诊医学杂志, 2021, 30(6): 785-788. doi: 10.3760/cma.j.issn.1671-0282.2021.06.031

    [10]

    Yoon SH, Lee EJ, Lee J, et al. Prognostic value of the delta neutrophil index in pediatric cardiac arrest[J]. Sci Rep, 2020, 10(1): 3497. doi: 10.1038/s41598-020-60126-y

    [11]

    Yune HY, Chung SP, Park YS, et al. Delta neutrophil index as a promising prognostic marker in out of hospital cardiac arrest[J]. PLoS One, 2015, 10(3): e0120677. doi: 10.1371/journal.pone.0120677

    [12]

    罗成准, 王世伟, 贾天元, 等. 心肺复苏后患者中性粒细胞与淋巴细胞比值与死亡的相关性研究[J]. 临床急诊杂志, 2020, 21(2): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202002010.htm

    [13]

    Elkind MSV, Veltkamp R, Montaner J, et al. Natalizumab in acute ischemic stroke(ACTION Ⅱ): A randomized, placebo-controlled trial[J]. Neurology, 2020, 95(8): e1091-e1104. doi: 10.1212/WNL.0000000000010038

    [14]

    Gregorius J, Wang C, Stambouli O, et al. Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice[J]. Basic Res Cardiol, 2021, 116(1): 1-19. doi: 10.1007/s00395-020-00840-w

    [15]

    Wang J. Neutrophils in tissue injury and repair[J]. Cell Tissue Res, 2018, 371(3): 531-539. doi: 10.1007/s00441-017-2785-7

    [16]

    Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease[J]. Scand J Immunol, 2020, 92(1): e12883.

    [17]

    Krychtiuk KA, Lenz M, Richter B, et al. Monocyte subsets predict mortality after cardiac arrest[J]. J Leukoc Biol, 2021, 109(6): 1139-1146. doi: 10.1002/JLB.5A0420-231RR

    [18]

    Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood[J]. Blood, 2010, 116(16): e74-80. doi: 10.1182/blood-2010-02-258558

    [19]

    Asmussen A, Busch HJ, Helbing T, et al. Monocyte subset distribution and surface expression of HLA-DR and CD14 in patients after cardiopulmonary resuscitation[J]. Scientific Rep, 2021, 11(1): 1-12. doi: 10.1038/s41598-020-79139-8

    [20]

    Qi Z, An L, Liu B, et al. Patients with out-of-hospital cardiac arrest show decreased human leucocyte antigen-DR expression on monocytes and B and T lymphocytes after return of spontaneous circulation[J]. Scand J Immunol, 2018, 88(4): e12707. doi: 10.1111/sji.12707

    [21]

    Hume DA. Differentiation and heterogeneity in the mononuclear phagocyte system[J]. Mucosal Immunol, 2008, 1(6): 432-441. doi: 10.1038/mi.2008.36

    [22]

    Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors[J]. Nature, 2015, 518(7540): 547-551. doi: 10.1038/nature13989

    [23]

    杨帅涛, 廖杰, 杜以梅. 巨噬细胞在心室重塑中的作用[J]. 临床心血管病杂志, 2021, 37(4): 304-308. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202104004.htm

    [24]

    Heidt T, Courties G, Dutta P, et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction[J]. Circ Res, 2014, 115(2): 284-295. doi: 10.1161/CIRCRESAHA.115.303567

    [25]

    Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1): 14-20. doi: 10.1016/j.immuni.2014.06.008

    [26]

    Martinez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression[J]. J Immunol, 2006, 177(10): 7303-7311. doi: 10.4049/jimmunol.177.10.7303

    [27]

    Xu X, Gao W, Li L, et al. Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway[J]. J Neuroinflammation, 2021, 18(1): 1-17. doi: 10.1186/s12974-020-02040-8

    [28]

    Wang M, Pan W, Xu Y, et al. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases[J]. J Inflamm Res, 2022, 15: 3083-3094. doi: 10.2147/JIR.S350109

    [29]

    Pohl J, Rammos C, Totzeck M, et al. MIF reflects tissue damage rather than inflammation in post-cardiac arrest syndrome in a real life cohort[J]. Resuscitation, 2016, 100: 32-37. doi: 10.1016/j.resuscitation.2015.12.015

    [30]

    Kattel S, Bhatt H, Xu S, et al. Macrophage-specific protein perforin-2 is associated with poor neurological recovery and reduced survival after sudden cardiac arrest[J]. Resuscitation, 2020, 155: 180-188. doi: 10.1016/j.resuscitation.2020.08.005

    [31]

    Ousta A, Piao L, Fang YH, et al. Microglial Activation and Neurological Outcomes in a Murine Model of Cardiac Arrest[J]. Neurocrit Care, 2022, 36(1): 61-70. doi: 10.1007/s12028-021-01253-w

    [32]

    Orsini F, De Blasio D, Zangari R, et al. Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis[J]. Front Cell Neurosci, 2014, 8: 380.

    [33]

    Gong P, Zhao H, Hua R, et al. Mild hypothermia inhibits systemic and cerebral complement activation in a swine model of cardiac arrest[J]. J Cereb Blood Flow Metab, 2015, 35(8): 1289-1295. doi: 10.1038/jcbfm.2015.41

    [34]

    Brennan FH, Anderson AJ, Taylor SM, et al. Complement activation in the injured central nervous system: another dual-edged sword[J]? J Neuroinflammation, 2012, 9(1): 1-13. doi: 10.1186/1742-2094-9-1

    [35]

    Wang L, Sun Y, Kong F, et al. Mild Hypothermia Alleviates Complement C5a-Induced Neuronal Autophagy During Brain Ischemia-Reperfusion Injury After Cardiac Arrest[J]. Cell Mol Neurobiol, 2022: 1-18.

    [36]

    Chaban V, Nakstad ER, Stær-Jensen H, et al. Complement activation is associated with poor outcome after out-of-hospital cardiac arrest[J]. Resuscitation, 2021, 166: 129-136. doi: 10.1016/j.resuscitation.2021.05.038

    [37]

    Böttiger BW, Motsch J, Braun V, et al. Marked activation of complement and leukocytes and an increase in the concentrations of soluble endothelial adhesion molecules during cardiopulmonary resuscitation and early reperfusion after cardiac arrest in humans[J]. Crit Care Med, 2002, 30(11): 2473-2480. doi: 10.1097/00003246-200211000-00012

    [38]

    Aluri J, Cooper MA, Schuettpelz LG. Toll-Like Receptor Signaling in the Establishment and Function of the Immune System[J]. Cells, 2021, 10(6): 1374. doi: 10.3390/cells10061374

    [39]

    Asmussen A, Fink K, Busch HJ, et al. Inflammasome and toll-like receptor signaling in human monocytes after successful cardiopulmonary resuscitation[J]. Crit Care, 2016, 20(1): 170. doi: 10.1186/s13054-016-1340-3

    [40]

    Xu L, Zhang Q, Zhang QS, et al. Improved Survival and Neurological Outcomes after Cardiopulmonary Resuscitation in Toll-like Receptor 4-mutant Mice[J]. Chin Med J(Engl), 2015, 128(19): 2646-2651.

    [41]

    Bergt S, Güter A, Grub A, et al. Impact of Toll-like receptor 2 deficiency on survival and neurological function after cardiac arrest: a murine model of cardiopulmonary resuscitation[J]. PLoS One, 2013, 8(9): e74944.

    [42]

    Liang L, Shao W, Shu T, et al. Xuezhikang improves the outcomes of cardiopulmonary resuscitation in rats by suppressing the inflammation response through TLR4/NF-κB pathway[J]. Biomed Pharmacother, 2019, 114: 108817.

    [43]

    Bergt S, Grub A, Mueller M, et al. Toll-like receptor 4 deficiency or inhibition does not modulate survival and neurofunctional outcome in a murine model of cardiac arrest and resuscitation[J]. PLoS One, 2019, 14(8): e0220404.

    [44]

    Dong C. Cytokine Regulation and Function in T Cells[J]. Annu Rev Immunol, 2021, 39: 51-76.

    [45]

    Wang W, Li R, Miao W, et al. Development and Evaluation of a Novel Mouse Model of Asphyxial Cardiac Arrest Revealed Severely Impaired Lymphopoiesis After Resuscitation[J]. J Am Heart Assoc, 2021, 10(11): e019142.

    [46]

    Gu W, Zhang Q, Li CS. Effect of Splenic Regulatory T-cell Apoptosis on the Postresuscitation Immune Dysfunction in a Porcine Model[J]. Chin Med J(Engl), 2016, 129(13): 1577-1583.

    [47]

    Tsivilika M, Doumaki E, Stavrou G, et al. The adaptive immune response in cardiac arrest resuscitation induced ischemia reperfusion renal injury[J]. J Biol Res(Thessalon), 2020, 27(1): 1-10.

    [48]

    Gu W, Li CS, Yin WP, et al. Expression imbalance of transcription factors GATA-3 and T-bet in post-resuscitation myocardial immune dysfunction in a porcine model of cardiac arrest[J]. Resuscitation, 2013, 84(6): 848-853.

    [49]

    Qi ZJ, Zhang Q, Liu B, et al. Early Changes in Circulatory T Helper Type 1, 2, and 17 Cells of Patients with Out-of-Hospital Cardiac Arrest after Successful Cardiopulmonary Resuscitation[J]. Chin Med J(Engl), 2018, 131(17): 2071-2079.

    [50]

    Qi Z, Liu Q, Zhang Q, et al. Overexpression of programmed cell death-1 and human leucocyte antigen-DR on circulatory regulatory T cells in out-of-hospital cardiac arrest patients in the early period after return of spontaneous circulation[J]. Resuscitation, 2018, 130: 13-20.

    [51]

    Linfert D, Chowdhry T, Rabb H. Lymphocytes and ischemia-reperfusion injury[J]. Transplant Rev(Orlando), 2009, 23(1): 1-10.

  • 加载中
计量
  • 文章访问数:  722
  • PDF下载数:  219
  • 施引文献:  0
出版历程
收稿日期:  2022-08-28
刊出日期:  2022-11-10

目录