心肺复苏相关肠道屏障损伤机制的研究进展

储玉倩, 张亮亮, 黄丽莎, 等. 心肺复苏相关肠道屏障损伤机制的研究进展[J]. 临床急诊杂志, 2022, 23(11): 764-769. doi: 10.13201/j.issn.1009-5918.2022.11.005
引用本文: 储玉倩, 张亮亮, 黄丽莎, 等. 心肺复苏相关肠道屏障损伤机制的研究进展[J]. 临床急诊杂志, 2022, 23(11): 764-769. doi: 10.13201/j.issn.1009-5918.2022.11.005
CHU Yuqian, ZHANG Liangliang, HUANG Lisa, et al. Research progress on the mechanism of gut barrier injury associated with cardiopulmonary resuscitation[J]. J Clin Emerg, 2022, 23(11): 764-769. doi: 10.13201/j.issn.1009-5918.2022.11.005
Citation: CHU Yuqian, ZHANG Liangliang, HUANG Lisa, et al. Research progress on the mechanism of gut barrier injury associated with cardiopulmonary resuscitation[J]. J Clin Emerg, 2022, 23(11): 764-769. doi: 10.13201/j.issn.1009-5918.2022.11.005

心肺复苏相关肠道屏障损伤机制的研究进展

  • 基金项目:
    2020年国家自然科学基金面上项目(No:82072134);安徽医科大学基础与临床合作研究提升计划项目(No:019xkjT028);2020年国家自然科学基金孵育计划项目(No:2020GMFY05);安徽省教育厅2020年度高校优秀拔尖人才培育资助项目(No:gxyq2020007);学科建设经费(No:9101001821);2021年高峰学科建设经费(No:9101001804)
详细信息

Research progress on the mechanism of gut barrier injury associated with cardiopulmonary resuscitation

More Information
  • 心搏骤停是常见的心血管危重症,随着急救流程规范化,心肺复苏成功率逐年提高,但其远期生存率仍较低。以脏器缺血/再灌注损伤、全身炎症反应为主要特征的复苏后综合征是心肺复苏后患者死亡的首要原因。肠道是对缺血/再灌注损伤最敏感的器官之一,其局部免疫系统的紊乱、微生物组群及其代谢产物组的改变均加重肠黏膜缺血/再灌注损伤,破坏黏膜屏障,引起继发感染,进一步加重肠道及肠外重要组织器官损伤。心肺复苏后的肠道屏障功能损伤被认为是多脏器功能障碍综合征的始动因素,因此,如何及早预防、诊断与治疗心肺复苏后的肠道屏障损伤对提高复苏远期生存率至关重要。本文对心肺复苏相关肠道屏障损伤的可能机制进行论述,以期为心搏骤停患者的治疗提供参考价值。
  • 加载中
  • [1]

    Andersen LW, Holmberg MJ, Berg KM, et al. In-Hospital Cardiac Arrest: A Review[J]. JAMA, 2019, 321(12): 1200-1210. doi: 10.1001/jama.2019.1696

    [2]

    Korth U, Krieter H, Denz C, et al. Intestinal ischaemia during cardiac arrest and resuscitation: comparative analysis of extracellular metabolites by microdialysis[J]. Resuscitation, 2003, 58(2): 209-217. doi: 10.1016/S0300-9572(03)00119-9

    [3]

    Braunstein M, Williamson M, Kusmenkov T, et al. Significant Cytokine mRNA Expression Changes Immediately after Initiation of Cardiopulmonary Resuscitation[J]. Mediators Inflamm, 2017, 2017: 8473171.

    [4]

    Bathe OF, Chow AW, Phang PT. Splanchnic origin of cytokines in a porcine model of mesenteric ischemia-reperfusion[J]. Surgery, 1998, 123(1): 79-88. doi: 10.1016/S0039-6060(98)70232-6

    [5]

    李春艳, 肖福大, 于明. 肠缺血再灌注时肿瘤坏死因子免疫组织化学研究[J]. 中华小儿外科杂志, 2002, 23(2): 150-152. doi: 10.3760/cma.j.issn.0253-3006.2002.02.018

    [6]

    金旭. 枯否氏细胞封闭对肠缺血/再灌注损伤肿瘤坏死因子α分泌的影响[J]. 2003.

    [7]

    Ma TY, Boivin MA, Ye D, et al. Mechanism of TNF-α modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression[J]. Am J Physiol Gastrointest Liver Physiol, 2005, 288(3): G422-430. doi: 10.1152/ajpgi.00412.2004

    [8]

    Ye D, Ma I, Ma TY. Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(3): G496-504. doi: 10.1152/ajpgi.00318.2005

    [9]

    Droessler L, Cornelius V, Markov AG, et al. Tumor Necrosis Factor Alpha Effects on the Porcine Intestinal Epithelial Barrier Include Enhanced Expression of TNF Receptor 1[J]. Int J Mol Sci, 2021, 22(16): 8746. doi: 10.3390/ijms22168746

    [10]

    Brazil JC, Parkos CA. Pathobiology of neutrophil-epithelial interactions[J]. Immunol Rev, 2016, 273(1): 94-111. doi: 10.1111/imr.12446

    [11]

    Li Q, Zhang Q, Wang M, et al. Interferon-gamma and TNF-α disrupt epithelial barrier function by altering lipid composition in membrane microdomains of tight junction[J]. Clin Immunol, 2008, 126(1): 67-80. doi: 10.1016/j.clim.2007.08.017

    [12]

    Gerlach UA, Atanasov G, Wallenta L, et al. Short-term TNF-α inhibition reduces short-term and long-term inflammatory changes post-ischemia/reperfusion in rat intestinal transplantation[J]. Transplantation, 2014, 97(7): 732-739. doi: 10.1097/TP.0000000000000032

    [13]

    Youngquist ST, Niemann JT, Shah AP, et al. A comparison of etanercept vs. infliximab for the treatment of post-arrest myocardial dysfunction in a swine model of ventricular fibrillation[J]. Resuscitation, 2013, 84(7): 999-1003. doi: 10.1016/j.resuscitation.2012.12.028

    [14]

    Niemann JT, Youngquist S, Rosborough JP, et al. Infliximab attenuates early myocardial dysfunction after resuscitation in a swine cardiac arrest model[J]. Crit Care Med, 2010, 38(4): 1162-1167. doi: 10.1097/CCM.0b013e3181d44324

    [15]

    Niemann JT, Youngquist ST, Shah AP, et al. TNF-α blockade improves early post-resuscitation survival and hemodynamics in a swine model of ischemic ventricular fibrillation[J]. Resuscitation, 2013, 84(1): 103-107. doi: 10.1016/j.resuscitation.2012.05.021

    [16]

    Niemann JT, Rosborough JP, Youngquist S, et al. Cardiac function and the proinflammatory cytokine response after recovery from cardiac arrest in swine[J]. J Interferon Cytokine Res, 2009, 29(11): 749-758. doi: 10.1089/jir.2009.0035

    [17]

    Yamamoto S, Tanabe M, Wakabayashi G, et al. The role of tumor necrosis factor-alpha and interleukin-1beta in ischemia-reperfusion injury of the rat small intestine[J]. J Surg Res, 2001, 99(1): 134-141. doi: 10.1006/jsre.2001.6106

    [18]

    He WQ, Wang J, Sheng JY, et al. Contributions of Myosin Light Chain Kinase to Regulation of Epithelial Paracellular Permeability and Mucosal Homeostasis. Int J Mol Sci, 2020, 21(3): 993. doi: 10.3390/ijms21030993

    [19]

    Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier[J]. Front Immunol, 2021, 12: 767456. doi: 10.3389/fimmu.2021.767456

    [20]

    Rawat M, Nighot M, Al-Sadi R, et al. IL1B Increases Intestinal Tight Junction Permeability by Up-regulation of MIR200C-3p, Which Degrades Occludin mRNA[J]. Gastroenterology, 2020, 159(4): 1375-1389. doi: 10.1053/j.gastro.2020.06.038

    [21]

    Feagan BG, Sandborn WJ, D'Haens G, et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, double-blind, placebo-controlled phase 2 study[J]. Lancet, 2017, 389(10080): 1699-1709. doi: 10.1016/S0140-6736(17)30570-6

    [22]

    Feagan BG, Panés J, Ferrante M, et al. Risankizumab in patients with moderate to severe Crohn's disease: an open-label extension study[J]. Lancet Gastroenterol Hepatol, 2018, 3(10): 671-680. doi: 10.1016/S2468-1253(18)30233-4

    [23]

    Sappington PL, Yang R, Yang H, et al. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice[J]. Gastroenterology, 2002, 123(3): 790-802. doi: 10.1053/gast.2002.35391

    [24]

    马尚贤, 魏丰贤, 王建雄, 等. 重症急性胰腺炎相关肠黏膜机械屏障损伤机制的研究进展[J]. 中华肝胆外科杂志, 2022, 28(4): 313-317. doi: 10.3760/cma.j.cn113884-20211124-00386

    [25]

    崔勇鹤, 王文俊. 重症急性胰腺炎肠道屏障障碍及治疗研究进展[J]. 临床急诊杂志, 2019, 20(1): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC201901017.htm

    [26]

    王洁, 何桂珍, 王玉康. 高迁移率族蛋白1在小鼠肠道缺血再灌注损伤信号转导通路中的作用[J]. 中华外科杂志, 2015, 53(3): 215-220. doi: 10.3760/cma.j.issn.0529-5815.2015.03.016

    [27]

    Sugita A, Kinoshita K, Sakurai A, et al. Systemic impact on secondary brain aggravation due to ischemia/reperfusion injury in post-cardiac arrest syndrome: a prospective observational study using high-mobility group box 1 protein[J]. Crit Care, 2017, 21(1): 247. doi: 10.1186/s13054-017-1828-5

    [28]

    Xue J, Ge H, Lin Z, et al. The role of dendritic cells regulated by HMGB1/TLR4 signalling pathway in myocardial ischaemia reperfusion injury[J]. J Cell Mol Med, 2019, 23(4): 2849-2862. doi: 10.1111/jcmm.14192

    [29]

    Sherif IO, Al-Shaalan NH. Vildagliptin Attenuates Hepatic Ischemia/Reperfusion Injury via the TLR4/NF-κB Signaling Pathway[J]. Oxid Med Cell Longev, 2018, 2018: 3509091.

    [30]

    Ding HS, Yang J, Chen P, et al. The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis[J]. Gene, 2013, 527(1): 389-393. doi: 10.1016/j.gene.2013.05.041

    [31]

    丁向阳, 余再新. 长链非编码RNA参与心肌缺血再灌注损伤的研究进展[J]. 临床心血管病杂志, 2019, 35(6): 573-578. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB201906020.htm

    [32]

    Li X, Wang H, Yao B, et al. lncRNA H19/miR-675 axis regulates cardiomyocyte apoptosis by targeting VDAC1 in diabetic cardiomyopathy[J]. Sci Rep, 2016, 6: 36340. doi: 10.1038/srep36340

    [33]

    Luo H, Wang J, Liu D, et al. The lncRNA H19/miR-675 axis regulates myocardial ischemic and reperfusion injury by targeting PPARα[J]. Mol Immunol, 2019, 105: 46-54. doi: 10.1016/j.molimm.2018.11.011

    [34]

    Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor[J]. Rna, 2007, 13(3): 313-316. doi: 10.1261/rna.351707

    [35]

    Zhi X, Tao J, Li Z, et al. MiR-874 promotes intestinal barrier dysfunction through targeting AQP3 following intestinal ischemic injury[J]. FEBS Lett, 2014, 588(5): 757-763. doi: 10.1016/j.febslet.2014.01.022

    [36]

    Su Z, Zhi X, Zhang Q, et al. LncRNA H19 functions as a competing endogenous RNA to regulate AQP3 expression by sponging miR-874 in the intestinal barrier[J]. FEBS Lett, 2016, 590(9): 1354-1364. doi: 10.1002/1873-3468.12171

    [37]

    Zou T, Jaladanki SK, Liu L, et al. H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR[J]. Mol Cell Biol, 2016, 36(9): 1332-1341. doi: 10.1128/MCB.01030-15

    [38]

    Chen S, Zhang C, He B, et al. The Role of lncRNAs in Regulating the Intestinal Mucosal Mechanical Barrier[J]. Biomed Res Int, 2021, 2021: 2294942.

    [39]

    Jacobs MC, Haak BW, Hugenholtz F, et al. Gut microbiota and host defense in critical illness[J]. Opin Crit Care, 2017, 23(4): 257-263. doi: 10.1097/MCC.0000000000000424

    [40]

    曾素芬, 秦嫚嫚, 苏玲庆, 等. 心肌缺血再灌注手术改变炎症相关肠道菌群[J]. 中国微生态学杂志, 2022, 34(1): 39-45, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWS202201007.htm

    [41]

    Peng K, Xia S, Xiao S, et al. Short-chain fatty acids affect the development of inflammatory bowel disease through intestinal barrier, immunology, and microbiota: A promising therapy[J]? J Gastroenterol Hepatol, 2022.

    [42]

    平易, 魏艳玲, 陈东风, 等. 肠道短链脂肪酸与肠黏膜屏障[J]. 胃肠病学和肝病学杂志, 2022, 31(5): 508-512. doi: 10.3969/j.issn.1006-5709.2022.05.006

    [43]

    Kim MH, Kang SG, Park JH, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013, 145(2): 396-406. e1-10. doi: 10.1053/j.gastro.2013.04.056

    [44]

    Park J, Goergen CJ, HogenEsch H, et al. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis[J]. J Immunol, 2016, 196(5): 2388-400. doi: 10.4049/jimmunol.1502046

    [45]

    钟世顺, 宋京翔, 张振书, 等. 双歧杆菌黏附素对大鼠肠缺血再灌注损伤的防护作用[J]. 中华内科杂志, 2011, 50(10): 863-867. doi: 10.3760/cma.j.issn.0578-1426.2011.10.017

    [46]

    Hu J, Deng F, Zhao B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling[J]. Microbiome, 2022, 10(1): 38. doi: 10.1186/s40168-022-01227-w

    [47]

    Grimaldi D, Guivarch E, Neveux N, et al. Markers of intestinal injury are associated with endotoxemia in successfully resuscitated patients[J]. Resuscitation, 2013, 84(1): 60-65. doi: 10.1016/j.resuscitation.2012.06.010

    [48]

    Yu LC, Flynn AN, Turner JR, et al. SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism[J]? Faseb J, 2005, 19(13): 1822-1835. doi: 10.1096/fj.05-4226com

    [49]

    Guo S, Nighot M, Al-Sadi R, et al. Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88[J]. J Immunol, 2015, 195(10): 4999-5010. doi: 10.4049/jimmunol.1402598

    [50]

    Chang R, Wang Y, Chang J, et al. LPS preconditioning ameliorates intestinal injury in a rat model of hemorrhagic shock[J]. Inflamm Res, 2014, 63(8): 675-682. doi: 10.1007/s00011-014-0740-6

    [51]

    Steimle A, Michaelis L, Di Lorenzo F, et al. Weak Agonistic LPS Restores Intestinal Immune Homeostasis[J]. Mol Ther, 2019, 27(11): 1974-1991. doi: 10.1016/j.ymthe.2019.07.007

  • 加载中
计量
  • 文章访问数:  721
  • PDF下载数:  225
  • 施引文献:  0
出版历程
收稿日期:  2022-08-27
刊出日期:  2022-11-10

目录