超声测量视神经鞘直径联合Pcv-aCO2/Ca-cvO2对重型颅脑创伤患者院前使用甘露醇的评估价值

姜辉, 谢志惠, 杨柳. 超声测量视神经鞘直径联合Pcv-aCO2/Ca-cvO2对重型颅脑创伤患者院前使用甘露醇的评估价值[J]. 临床急诊杂志, 2022, 23(9): 620-625. doi: 10.13201/j.issn.1009-5918.2022.09.003
引用本文: 姜辉, 谢志惠, 杨柳. 超声测量视神经鞘直径联合Pcv-aCO2/Ca-cvO2对重型颅脑创伤患者院前使用甘露醇的评估价值[J]. 临床急诊杂志, 2022, 23(9): 620-625. doi: 10.13201/j.issn.1009-5918.2022.09.003
JIANG Hui, XIE Zhihui, YANG Liu. Prognostic value of ultrasonographic measurement of optic nerve sheath diameter combined with Pcv-aCO2/Ca-cvO2 for prehospital mannitol administration in patients with severe traumatic brain injury[J]. J Clin Emerg, 2022, 23(9): 620-625. doi: 10.13201/j.issn.1009-5918.2022.09.003
Citation: JIANG Hui, XIE Zhihui, YANG Liu. Prognostic value of ultrasonographic measurement of optic nerve sheath diameter combined with Pcv-aCO2/Ca-cvO2 for prehospital mannitol administration in patients with severe traumatic brain injury[J]. J Clin Emerg, 2022, 23(9): 620-625. doi: 10.13201/j.issn.1009-5918.2022.09.003

超声测量视神经鞘直径联合Pcv-aCO2/Ca-cvO2对重型颅脑创伤患者院前使用甘露醇的评估价值

详细信息

Prognostic value of ultrasonographic measurement of optic nerve sheath diameter combined with Pcv-aCO2/Ca-cvO2 for prehospital mannitol administration in patients with severe traumatic brain injury

More Information
  • 目的 床旁超声测量视神经鞘直径(ONSD)判断颅内压(ICP)联合Pcv-aCO2/Ca-cvO2指导重型颅脑外伤(TBI)患者院前甘露醇应用的评估价值。方法 采用前瞻性队列研究选择我院2021年1月-2022年1月院前接诊的重型TBI患者,将其中格拉斯哥昏迷评分(GCS) < 8分者作为研究对象。院前接诊后,通过床旁超声测量ONSD评估ICP,置入中心静脉导管,采取颈内静脉血样本,计算Pcv-aCO2/Ca-cvO2值。将患者分为4组:A组,Pcv-aCO2/Ca-cvO2>1.8且ONSD>5 mm; B组,Pcv-aCO2/Ca-cvO2>1.8且ONSD≤5 mm; C组,Pcv-aCO2/Ca-cvO2≤1.8且ONSD>5 mm; D组,Pcv-aCO2/Ca-cvO2≤1.8且ONSD≤5 mm。研究期间,院前共接诊343例TBI患者,根据纳入、排除标准,最终275例患者纳入分析,其中A组77例,B组69例,C组70例,D组59例。以死亡或出院作为观察终点。观察、记录并分析是否使用甘露醇在4组间30 d病死率、神经功能恢复情况[通过格拉斯哥预后评分(GOS)进行评估]、住院天数差异。结果 在未经调整的logistic回归分析中,C组患者接受甘露醇治疗是重型TBI患者30 d病死率增高的保护性因素(OR=0.36,95%CI:0.15~0.86,P< 0.001)。在调整混杂因素后,C组患者接受甘露醇治疗仍是重型TBI患者30 d病死率增高的保护性因素(OR=0.31,95%CI:0.11~0.73,P=0.004)。其他3组院前使用甘露醇与30 d病死率之间无相关性。Cox生存曲线显示C组患者使用甘露醇后生存率明显提高。结论 ICP监测联合Pcv-aCO2/Ca-cvO2有助于指导院前重型TBI患者甘露醇的使用。
  • 加载中
  • 图 1  4组间重型TBI患者的生存率分析

    表 1  接受甘露醇治疗与未接受者基本资料分析 例(%),M(P25P75)

    基本资料和创伤数据 接受甘露醇(131例) 未接受甘露醇(144例) P
    年龄/岁 49(28,59) 47(23,67) 0.07
    性别 0.08
      男 88(67) 94(65)
      女 43(33) 50(35)
    创伤分类
      单纯TBI 67(51) 71(49) 0.06
      多发伤 64(49) 73(51) 0.06
    ISS评分/分 37(21,58) 26(17,39) < 0.01
    院前重要体查参数
      GCS评分/分 4(3,6) 8(3,10) < 0.01
      SPO2/% 87(81,95) 90(83,97) 0.40
      收缩压/mmHg 182(91,201) 149(99,183) 0.03
      30 d病死率/% 53(69/131) 40(57/144) < 0.01
    出院时GOS评估情况 0.06
      死亡 3(2) 5(3)
      植物状态 9(7) 14(10)
      严重残疾 56(43) 59(41)
      中等残疾 23(18) 31(22)
      恢复良好 40(31) 35(24)
    住院天数/d 16(6,32) 11(7.5,27.0) 0.01
    下载: 导出CSV

    表 2  调整前后使用甘露醇与病死率在4组间的回归分析

    组别 未调整的回归分析 调整后的回归分析
    OR(95%CI) P OR(95%CI) P
    A组 1.03(0.97~1.22) 0.06 1.01(0.88~1.19) 0.07
    B组 1.02(0.94~1.17) 0.09 0.99(0.95~1.04) 0.09
    C组 0.36(0.15~0.86) < 0.001 0.31(0.11~0.73) 0.004
    D组 1.09(0.94~1.20) 0.08 1.03(0.91~1.13) 0.07
    注:使用logistic回归分析比较4组间重型TBI患者与30 d病死率间的关系; 调整后的多因素logistic回归分析模型,相应控制变量被加入该模型中,包括患者基本资料、创伤类型、创伤前基础情况、创伤严重程度评估、首次生命体征(收缩压、心率、血氧饱和度)等。
    下载: 导出CSV
  • [1]

    吉其舰, 彭海丽, 郭小敏. 重度颅脑外伤患者术后监测颅内压及压力相关指数的临床价值[J]. 临床急诊杂志, 2021, 22(5): 335-339. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202105009.htm

    [2]

    Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management[J]. Med Clin North Am, 2020, 104(2): 213-238. doi: 10.1016/j.mcna.2019.11.001

    [3]

    Zeiler FA, Aries M, Czosnyka M, et al. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine[J]. J Neurotrauma, 2022.

    [4]

    Robinson CP. Moderate and Severe Traumatic Brain Injury[J]. Continuum(Minneap Minn), 2021, 27(5): 1278-1300.

    [5]

    Marklund N, Bellander BM, Godbolt AK, et al. Treatments and rehabilitation in the acute and chronic state of traumatic brain injury[J]. J Intern Med, 2019, 285(6): 608-623. doi: 10.1111/joim.12900

    [6]

    Krishnamoorthy V, Komisarow JM, Laskowitz DT, et al. Multiorgan Dysfunction After Severe Traumatic Brain Injury: Epidemiology, Mechanisms, and Clinical Management[J]. Chest, 2021, 160(3): 956-964. doi: 10.1016/j.chest.2021.01.016

    [7]

    Kochanek PM, Tasker RC, Carney N, et al. Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition: Update of the Brain Trauma Foundation Guidelines, Executive Summary[J]. Neurosurgery, 2019, 84(6): 1169-1178. doi: 10.1093/neuros/nyz051

    [8]

    Chesnut RM, Temkin N, Carney N, et al. A trial of intracranialpressure monitoring in traumatic brain injury[J]. N Eng J Med, 2012, 367: 2471-2481. doi: 10.1056/NEJMoa1207363

    [9]

    日本神经外科学会. 重型头部外伤治疗·管理指南[M]. 第2版. 神经外伤, 2006, 29: 1-115.

    [10]

    GAO XH, Cao W, Li PJ. Pcv-aCO2/Ca-cvO2 Combined With Arterial Lactate Clearance Rate as Early Resuscitation Goals in Septic Shock[J]. Am J Med Sci, 2019, 358(3): 182-190. doi: 10.1016/j.amjms.2019.04.025

    [11]

    Dubin A, Pozo MO, Hurtado J. Central venous minus arterial carbon dioxide pressure to arterial minus central venous oxygen content ratio as an indicator of tissue oxygenation: a narrative review[J]. Rev Bras Ter Intensiva, 2020, 32(1): 115-122.

    [12]

    Berthet M, Durand M. Meaning of the venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio[J]. Crit Care Med, 2013, 41(12): e489-90.

    [13]

    包赘, 鲍南, 陈文劲, 等. 甘露醇治疗颅内压增高专家共识[J]. 中华医学杂志, 2019, 99(23): 1763-1766. doi: 10.3760/cma.j.issn.0376-2491.2019.23.002

    [14]

    赵立娜, 谢晖, 王瑞兰. 超声测量视神经鞘直径评估颅内压增高的临床研究进展[J]. 中华重症医学电子杂志(网络版), 2020, 6(1): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYD202001033.htm

    [15]

    Stevens R, Gommer ED, Aries M, et al. Optic nerve sheath diameter assessment by neurosonology: A review of methodologic discrepancies[J]. J Neuroimaging, 2021, 31(5): 814-825. doi: 10.1111/jon.12906

    [16]

    Godoy DA, Rabinstein AA. How to manage traumatic brain injury without invasive monitoring?[J]. Curr Opin Crit Care, 2022, 28(2): 111-122. doi: 10.1097/MCC.0000000000000914

    [17]

    王蕾, 朱保锋, 张毅, 等. 急诊头痛患者视神经鞘直径与颅内压相关性研究[J]. 临床急诊杂志, 2020, 21(1): 25-28, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202001002.htm

    [18]

    Mukai A, Suehiro K, Kimura A, et al. Comparison of the venous-arterial CO2 to arterial-venous O2 content difference ratio with the venous-arterial CO2 gradient for the predictability of adverse outcomes after cardiac surgery[J]. Clin Monit Comput, 2020, 34(1): 41-53. doi: 10.1007/s10877-019-00286-z

    [19]

    Zante B, Kluge S. Central Venous-Arterial CO2 Difference in Cardiac Surgery Patients-A Parameter in Relationship to Cardiac Output and Altered Microcirculatory Blood Flow[J]. Shock, 2020, 54(2): 273-274. doi: 10.1097/SHK.0000000000001525

    [20]

    Molloy S, Batchelor G, Mallett P, et al. Fifteen-minute consultation: Severe traumatic brain injury in paediatrics[J]. Arch Dis Child Educ Pract Ed, 2021, 106(1): 9-17. doi: 10.1136/archdischild-2019-318246

    [21]

    Petkus V, Preiksaitis A, Chaleckas E, et al. Optimal Cerebral Perfusion Pressure: Targeted Treatment for Severe Traumatic Brain Injury[J]Neurotrauma, 2020 Jan 15; 37(2): 389-396.

    [22]

    Janotka M, Ostadal P. Biochemical markers for clinical monitoring of tissue perfusion[J]. Mol Cell Biochem, 2021, 476(3): 1313-1326. doi: 10.1007/s11010-020-04019-8

    [23]

    Bitar ZI, Maadarani OS, El-Shably AM, et al. The Forgotten Hemodynamic(PCO2 Gap)in Severe Sepsis[J]. Crit Care Res Pract, 2020, 2020: 9281623.

    [24]

    Mukai A, Suehiro K, Kimura A, et al. Comparison of the venousarterial CO2 to arterial-venous O2 content difference ratio with the venous-arterial CO2 gradient for the predictability of adverse outcomes after cardiac surgery[J]. Clin Monit Comput, 2020, 34(1): 41-53. doi: 10.1007/s10877-019-00286-z

    [25]

    Roy TK, Secomb TW. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function[J]. Microcirculation, 2021, 28(3): e12673.

    [26]

    Próspero AG, Soares GA, Moretto GM, et al. Dynamic cerebral perfusion parameters and magnetic nanoparticle accumulation assessed by AC biosusceptometry[J]. Biomed Tech(Berl), 2020, 65(3): 343-351. doi: 10.1515/bmt-2019-0089

  • 加载中

(1)

(2)

计量
  • 文章访问数:  1215
  • PDF下载数:  614
  • 施引文献:  0
出版历程
收稿日期:  2022-05-23
刊出日期:  2022-09-10

目录