儿童脓毒性休克免疫紊乱的临床特点

杨雅, 肖曙芳, 王艳俊, 等. 儿童脓毒性休克免疫紊乱的临床特点[J]. 临床急诊杂志, 2022, 23(7): 469-475. doi: 10.13201/j.issn.1009-5918.2022.07.003
引用本文: 杨雅, 肖曙芳, 王艳俊, 等. 儿童脓毒性休克免疫紊乱的临床特点[J]. 临床急诊杂志, 2022, 23(7): 469-475. doi: 10.13201/j.issn.1009-5918.2022.07.003
YANG Ya, XIAO Shufang, WANG Yanjun, et al. Clinical features of immune disorders in children with septic shock[J]. J Clin Emerg, 2022, 23(7): 469-475. doi: 10.13201/j.issn.1009-5918.2022.07.003
Citation: YANG Ya, XIAO Shufang, WANG Yanjun, et al. Clinical features of immune disorders in children with septic shock[J]. J Clin Emerg, 2022, 23(7): 469-475. doi: 10.13201/j.issn.1009-5918.2022.07.003

儿童脓毒性休克免疫紊乱的临床特点

详细信息

Clinical features of immune disorders in children with septic shock

More Information
  • 目的 研究儿童脓毒性休克的免疫紊乱特点,评估外周血淋巴细胞亚群及体液免疫的改变能否为脓毒症患儿的病情预警及临床诊治提供参考。方法 选取昆明市儿童医院PICU 2018年1月—2020年12月收治的65例脓毒性休克患儿为脓毒性休克组,将同期121例脓毒症患儿为脓毒症组,76例健康体检儿童为对照组。收集研究对象的一般资料、淋巴细胞亚群、体液免疫、炎性指标、血生化等临床资料。采用统计软件SPSS 24.0对数据进行分析。结果 ① 对比分析3组的淋巴细胞亚群,发现T细胞、CD4+T细胞百分率在脓毒症组及对照组间随病情严重程度呈下降趋势,CD19+B细胞百分率随病情严重程度呈上升趋势,脓毒性休克组的CD16+CD56+百分率明显低于对照组,均差异有统计学意义(P<0.05)。②对比分析3组的体液免疫,发现脓毒性休克组的IgG、C3、C4明显低于对照组,均差异有统计学意义(P<0.05)。③通过ROC曲线评价免疫指标对脓毒症的诊断价值,结果显示CD19+B细胞百分率的曲线下面积为0.759,具有一定预测性。④通过logistic回归分析发现IgG和C3是影响脓毒症病情加重的危险因素,IgG和C3的浓度与脓毒症进展为脓毒性休克呈负相关(IgG:OR=0.827,P=0.003;C3:OR=0.133,P=0.002)。⑤通过Pearson相关性分析发现APACHEⅡ评分与CD3+CD4+T细胞百分率、CD4+/CD8+呈负相关,与CD3+CD8+T细胞百分率呈正相关;SOFA评分与CD4+/CD8+呈负相关,与CD3+CD8+T细胞百分率呈正相关;APACHEⅡ评分、SOFA评分均与C3、C4呈负相关。⑥脓毒性休克患儿的肝功能损伤与IgG、IgA呈正相关,与C3呈负相关;肾功能损伤与IgA呈正相关,与C3呈负相关;心肌损伤与C3、C4呈负相关;凝血功能障碍与C3、C4呈负相关;脓毒性休克患儿的器官功能障碍与淋巴细胞亚群不存在相关性。结论 ①儿童脓毒性休克及脓毒症均存在细胞免疫紊乱,且脓毒性休克的免疫紊乱更为严重;②随着脓毒症病情的加重,细胞免疫紊乱表现为CD4+T细胞、NK细胞逐渐衰竭、CD19+B细胞大量增殖活化;③脓毒性休克时存在B淋巴细胞功能障碍及补体系统紊乱,表现为IgG、C3、C4的浓度明显降低,且降低程度与SOFA评分、APACHEⅡ评分呈负相关;此外,IgG和C3降低是脓毒性休克发生的危险因素;④补体的过度激活和消耗与器官功能损伤密切相关; ⑤SOFA评分、APACHE Ⅱ评分对脓毒症、脓毒性休克患儿的病情评估和预后预测具有较高的价值。
  • 加载中
  • 图 1  淋巴细胞亚群及体液免疫各指标对诊断脓毒症的ROC曲线图

    表 1  3组间淋巴细胞亚群及体液免疫的差异性分析 X±S

    指标 脓毒性休克组(n=65) 脓毒症组(n=121) 对照组(n=76) F P
    CD3+/% 50.07±15.88 54.09±12.76 64.59±7.23 27.228 <0.001
    CD3+CD8+/% 19.46±9.96 19.66±9.23 20.87±6.75 0.582 0.559
    CD3+CD4+/% 26.64±10.96 30.01±9.29 38.91±8.58 32.788 <0.001
    CD3+CD4+CD8+/% 0.28±0.35 0.39±0.86 0.33±0.25 0.662 0.517
    CD16+CD56+/% 9.16±5.58 13.12±7.35 13.00±6.81 8.134 <0.001
    CD19+/% 38.75±15.37 30.71±13.87 21.33±6.81 33.390 <0.001
    CD4+/CD8+ 1.75±1.19 1.85±1.03 2.13±1.02 2.570 0.078
    IgG /(g·L-1) 5.30±3.23 7.99±6.13 6.62±2.69 7.178 0.001
    IgM /(g·L-1) 0.84±0.47 0.96±0.60 0.97±0.50 1.411 0.246
    IgA /(g·L-1) 0.56±0.70 0.56±0.62 0.47±0.57 0.621 0.538
    C4 /(g·L-1) 0.15±0.09 0.23±0.12 0.21±0.09 11.313 <0.001
    C3 /(g·L-1) 0.71±0.40 1.14±0.44 0.91±0.22 27.120 <0.001
    下载: 导出CSV

    表 2  生存组和死亡组淋巴细胞亚群及体液免疫的差异性分析 X±SM(Q)

    指标 生存组(n=43) 死亡组(n=22) t/z P
    CD3+/% 48.90±14.24 52.34±18.83 -0.824 0.413
    CD3+CD8+/% 17.00(9.72) 18.58(12.89) -1.422 0.149
    CD3+CD4+/% 27.86±10.48 24.24±11.73 1.266 0.210
    CD3+CD4+CD8+/% 0.20(0.24) 0.23(0.33) -0.167 0.537
    CD16+CD56+/% 8.29(6.40) 7.57(6.86) -0.021 0.983
    CD19+/% 40.31±13.09 35.70±19.05 1.020 0.316
    CD4+/CD8+ 1.51(1.39) 1.20(0.82) -1.795 0.073
    IgG /(g·L-1) 4.50(2.70) 4.40(2.83) -0.458 0.647
    IgM /(g·L-1) 0.27(0.88) 0.29(0.57) 0.714 0.478
    IgA /(g·L-1) 0.56±0.70 0.56±0.62 -0.583 0.560
    C4 /(g·L-1) 0.16±0.09 0.13±0.09 1.322 0.191
    C3 /(g·L-1) 0.77±0.44 0.61±0.31 1.764 0.083
    下载: 导出CSV

    表 3  免疫指标与临床指标的相关系数比较

    指标 CD3+ CD3+CD8+ CD3+CD4+ CD3+CD4+CD8+ CD16+CD56+ CD19+
    APACHEⅡ评分 -0.055 0.302 -0.403 0.038 0.181 -0.046
    SOFA评分 0.132 0.337 -0.218 0.119 -0.077 -0.136
    血小板减少 0.106 0.207 -0.178 0.275 -0.075 -0.095
    肝功能损伤 0.197 0.243 -0.100 -0.035 -0.073 -0.214
    肾功能损伤 -0.018 0.029 0.016 0.119 0 -0.007
    凝血功能障碍 -0.026 -0.051 0.022 -0.094 -0.072 0.057
    心肌损伤 0.079 0.119 -0.070 0.099 0.040 -0.060
    胃肠功能紊乱 -0.218 -0.065 -0.194 0.085 0.134 0.169
    指标 CD4+/CD8+ IgG IgM IgA C4 C3
    APACHEⅡ评分 -0.462 -0.057 0.135 0.023 -0.250 -0.304
    SOFA评分 -0.349 0.033 -0.004 0.066 -0.296 -0.421
    血小板减少 -0.155 -0.006 -0.069 0.026 -0.139 -0.347
    肝功能损伤 -0.206 0.271 0.193 0.282 -0.067 -0.287
    肾功能损伤 -0.048 0.183 0.032 0.356 -0.183 -0.439
    凝血功能障碍 -0.006 -0.179 -0.084 0.071 -0.322 -0.400
    心肌损伤 -0.133 0.058 -0.123 0.067 -0.339 -0.407
    胃肠功能紊乱 -0.111 -0.006 0.034 0.002 0.002 -0.086
    下载: 导出CSV
  • [1]

    Carolin F, David MG, Peter S, et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Resp Med, 2018, 6(3): 223-230. doi: 10.1016/S2213-2600(18)30063-8

    [2]

    Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287

    [3]

    中国研究型医院学会休克与脓毒症专业委员会, 中国人民解放军重症医学专业委员会, 重症免疫研究协作组, 等. 脓毒症免疫抑制诊治专家共识[J]. 中华危重病急救医学, 2020, 32(11): 1281-1289. doi: 10.3760/cma.j.cn121430-20201123-00719

    [4]

    Tian TW, Yong MY. Immunologic dissonance and its clinical significance in sepsis[J]. Med J Chinese PLA, 2017, 42(2): 95-102.

    [5]

    中华医学会儿科学分会急救学组, 中华医学会急诊医学分会儿科学组, 中国医师协会儿童重症医师分会. 儿童脓毒性休克(感染性休克)诊治专家共识(2015版)[J]. 中华儿科杂志, 2015, 53(8): 576-580. doi: 10.3760/cma.j.issn.0578-1310.2015.08.007

    [6]

    胡梓菡, 谢剑锋, 杨毅. 自然杀伤细胞在脓毒症免疫功能障碍中的研究进展[J]. 中华重症医学电子杂志(网络版), 2019, 5(2): 194-198. doi: 10.3877/cma.j.issn.2096-1537.2019.02.020

    [7]

    Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy[J]. Nat Rev Immunol, 2013, 13(12): 862-874. doi: 10.1038/nri3552

    [8]

    Holub M, Kluckova Z, Beneda B, et al. Changes in lymphocyte subpopulations and CD3+/DR+ expression in sepsis[J]. Clin Microbiol Infec, 2000, 6(12): 657-660. doi: 10.1046/j.1469-0691.2000.00175.x

    [9]

    Jorge M, Raul DP, Eduardo R, et al. Clinical relevance of the severe abnormalities of the T cell compartment in septic shock patients[J]. Crit Care, 2009, 13(1): R26. doi: 10.1186/cc7731

    [10]

    Ye Q, Shao W, Wang Q, et al. An imbalance of T cell subgroups exists in children with sepsis[J]. Microbes Infect, 2019, 21(8-9): 386-392. doi: 10.1016/j.micinf.2019.04.002

    [11]

    Frattari A, Polilli E, Primiterra V, et al. Analysis of peripheral blood lymphocyte subsets in critical patients at ICU admission: A preliminary investigation of their role in the prediction of sepsis during ICU stay[J]. Int J Immunopath Ph, 2018, 32: 2058738418792310.

    [12]

    龙盼, 李响, 姜丽静, 等. 脓毒症休克患者临床免疫功能分析[J]. 重庆医学, 2017, 46(2): 198-200. doi: 10.3969/j.issn.1671-8348.2017.02.016

    [13]

    Hotchkiss RS, Tinsley KW, Swanson PE, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+T lymphocytes in humans[J]. J Immunol, 2001, 166(11): 6952-6963. doi: 10.4049/jimmunol.166.11.6952

    [14]

    曹雪涛. 医学免疫学[M]. 北京: 人民卫生出版社, 2013: 57-58.

    [15]

    Manu S, Nicholas C, Benjamin P, et al. Endogenous IgG hypogammaglobulinaemia in critically ill adults with sepsis: systematic review and meta-analysis[J]. Intens Care Med, 2015, 41(8): 1393-1401. doi: 10.1007/s00134-015-3845-7

    [16]

    Lee WL, Slutsky AS. Sepsis and Endothelial Permeability[J]. New Engl J Med, 2010, 363(7): 689-691. doi: 10.1056/NEJMcibr1007320

    [17]

    Michaelsen TE, Sandlie I, Bratlie DB, et al. Structural difference in the complement activation site of human IgG1 and IgG3[J]. Scand J Immunol, 2009, 70(6): 553-564. doi: 10.1111/j.1365-3083.2009.02338.x

    [18]

    Nordenfelt P, Waldemarson S, Linder A, et al. Antibody orientation at bacterial surfaces is related to invasive infection[J]. J Exp Med, 2012, 209(13): 2367-2381. doi: 10.1084/jem.20120325

    [19]

    Shankar-Hari M, Spencer J, Sewell WA, et al. Bench-to-bedside review: Immunoglobulin therapy for sepsis-biological plausibility from a critical care perspective[J]. Crit Care, 2012, 16(2): 206.

    [20]

    Bermejo-Martin JF, Rodriguez-Fernandez A, Herran-Monge R, et al. Immunoglobulins IgG1, IgM and IgA: a synergistic team influencing survival in sepsis[J]. J Intern Med, 2014, 276(4): 404-412. doi: 10.1111/joim.12265

    [21]

    Raquel A, Eduardo T, Maria H, et al. Transcriptomic evidence of impaired immunoglobulin G production in fatal septic shock[J]. J Crit Care, 2014, 29(2): 307-309. doi: 10.1016/j.jcrc.2013.11.020

    [22]

    孟祥忠, 张晓宁, 朱宇. 重症脓毒症休克患者免疫状况的临床分析[J]. 实用临床医药杂志, 2018, 22(1): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZL201801002.htm

    [23]

    孙杭, 张宪伟, 潘伟. 补体消耗与脓毒症患儿病情严重程度的相关性[J]. 中华实用儿科临床杂志, 2017, 32(6): 425-429. doi: 10.3760/cma.j.issn.2095-428X.2017.06.007

    [24]

    Vosylius S, Sipylaite J, Ivaskevicius J. Sequential organ failure assessment score as the determinant of outcome for patients with severe sepsis[J]. Croat Med J, 2004, 45(6): 715-720.

    [25]

    侯云静, 唐晟, 王彬, 等. 急性生理学及慢性健康评估Ⅱ系统在临床重症监护中的应用[J]. 中国医学装备, 2015, 12(1): 84-86. doi: 10.3969/J.ISSN.1672-8270.2015.01.027

    [26]

    Maciej MM, John DL. The Role of Complement in Inflammatory Diseases From Behind the Scenes into the Spotlight[J]. Am J Pathol, 2007, 171(3): 715-727. doi: 10.2353/ajpath.2007.070166

    [27]

    Maciej MM, Robert AD, John DL. Complexity of complement activation in sepsis[J]. J Cell Mol Med, 2008, 12(6a): 2245-2254. doi: 10.1111/j.1582-4934.2008.00504.x

    [28]

    Amara U, Rittirsch D, Flierl M, et al. Interaction between the coagulation and complement system[J]. Adv Exp Med Biol, 2008, 632: 71-79.

    [29]

    Maciej MM, Bo N, Kristina NE, et al. Complement and coagulation: strangers or partners in crime?[J]. Trends Immunol, 2007, 28(4): 184-192. doi: 10.1016/j.it.2007.02.006

    [30]

    Levi M. Disseminated intravascular coagulation[J]. Crit Care Med, 2007, 35(9): 2191-2195. doi: 10.1097/01.CCM.0000281468.94108.4B

    [31]

    Dhainaut J, Shorr AF, Macias WL, et al. Dynamic evolution of coagulopathy in the first day of severe sepsis: Relationship with mortality and organ failure[J]. Crit Care Med, 2005, 33(2): 341-348. doi: 10.1097/01.CCM.0000153520.31562.48

  • 加载中

(1)

(3)

计量
  • 文章访问数:  1565
  • PDF下载数:  483
  • 施引文献:  0
出版历程
收稿日期:  2022-04-02
刊出日期:  2022-07-10

目录