机器学习在急诊医疗服务体系中的应用现状与展望

李萍, 聂虎. 机器学习在急诊医疗服务体系中的应用现状与展望[J]. 临床急诊杂志, 2020, 21(6): 507-511. doi: 10.13201/j.issn.1009-5918.2020.06.018
引用本文: 李萍, 聂虎. 机器学习在急诊医疗服务体系中的应用现状与展望[J]. 临床急诊杂志, 2020, 21(6): 507-511. doi: 10.13201/j.issn.1009-5918.2020.06.018
Application and outlook of machine learning in emergency medical service system[J]. J Clin Emerg, 2020, 21(6): 507-511. doi: 10.13201/j.issn.1009-5918.2020.06.018
Citation: Application and outlook of machine learning in emergency medical service system[J]. J Clin Emerg, 2020, 21(6): 507-511. doi: 10.13201/j.issn.1009-5918.2020.06.018

机器学习在急诊医疗服务体系中的应用现状与展望

  • 基金项目:

    四川大学华西医院新型冠状病毒科技攻关项目(No:HX2019nCoV026)

详细信息
    通讯作者: 聂虎,E-mail:456nh@163.com
  • 中图分类号: R459.7

Application and outlook of machine learning in emergency medical service system

More Information
  • 加载中
  • [1]

    Alanazi HO,Abdullah AH,Qureshi KN.A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care[J].J Med Syst,2017,41(4):69-79.

    [2]

    Van Calster B,Wynants L.Machine learning in medicine[J].N Engl J Med,2019,380(26):2588.

    [3]

    Stankiewicz S,Larsen C,Sullivan F,et al.Evaluation of a practice improvement protocol for patient transfer from the emergency department to the surgical intensive care unit after a level I trauma activation[J].J Emerg Nurs,2019,45(2):144-148.

    [4]

    Man TK,Glen WC,Anika M.et al.The efficacy and effectiveness of machine learning for weaning in mechanically ventilated patients at the intensive care unit:a systematic review[J].Bio-des Manuf,2019,2(1):31-40.

    [5]

    Blomberg SN,Folke F,Ersboll AK,et al.Machine learning as a supportive tool to recognize cardiac arrest in emergency calls[J].Resuscitation,2019,138:322-329.

    [6]

    Spangler D,Hermansson T,Smekal D,et al.A validation of machine learning-based risk scores in the prehospital setting[J].PloS One,2019,14(12):0226518..

    [7]

    Dohyun K,Sungmin Y,Soonwon S,et al.A data-driven artificial intelligence model for remote triage in the prehospital environment[J].PloS One,2018,13(10):e0206006.

    [8]

    Nie ZZ,Zhu W,Yang RP,et al.An intelligent network planning algorithm for emergency communication with deep learning[C].//Proceedings of 3rd International Conference on Mechatronics Engineering and Information Technology(ICMEIT 2019),2019-4-20,Atlantis Press,2019:336-343.

    [9]

    Hyunmin K,Sung-Woo K,Eunjeong P,et al.The role of fifth-generation mobile technology in prehospital emergency care:An opportunity to support paramedics[J].Health Policy Technol,2020,9(1):109-114.

    [10]

    Heejung Y,Howon L,Hongbeom J.What is 5G?Emerging 5G mobile services and network requirements[J].Sustainability,2017,9(10):1848.

    [11]

    葛芳民,李强,林高兴,等.基于5G技术院前-院内急诊医疗服务平台建设的研究[J].中华急诊医学杂志,2019,28(10):1223-1227.

    [12]

    Raita Y,Goto T,Faridi MK,et al.Emergency department triage prediction of clinical outcomes using machine learning models[J].Crit Care,2019,23(1):64-76.

    [13]

    Hunter-Zinck HS,Peck JS,Strout TD,et al.Predicting emergency department orders with multilabel machine learning techniques and simulating effects on length of stay[J].J Am Med Inform Assoc,2019,26(12):1427-1436.

    [14]

    Levin S,Toerper M,Hamrock E,et al.Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with the Emergency Severity Index[J].Ann Emerg Med,2018,71(5):565-574.e2.

    [15]

    Klang E,Barash Y,Soffer S,et al.Promoting head CT exams in the emergency department triage using a machine learning model[J].Neuroradiology,2020,62(2):153-160.

    [16]

    张薇,孙明伟,曾俊,等.基于人工智能构建急腹症快速分诊系统[J].实用医院临床杂志,2019,16(1):219-222.

    [17]

    Kim J,Chang H,Kim D,et al.Machine learning for prediction of septic shock at initial triage in emergency department[J].J Crit Care,2020,55:163-170.

    [18]

    Shung LD,Au B,Taylor AR,et al.Validation of a machine learning model that outperforms Clinical Risk Scoring Systems for upper gastrointestinal bleeding[J].Gastroenterology,2020,158(1):160-167.

    [19]

    Duceau B,Alsac J-M,Bellenfant F,et al.Prehospital triage of acute aortic syndrome using a machine learning algorithm[J].Br J Surg,2020.

    [20]

    Hong SW,Haimovich DA,Taylor AR,et al.Predicting hospital admission at emergency department triage using machine learning[J].PLoS One,2018,13(7):e0201016.

    [21]

    Intas G,Stergiannis P,Chalari E,et al.The impact of ED boarding time,severity of illness,and discharge destination on outcomes of critically ill ED patients[J].Adv Emerg Nurs J,2012,34(2):164-169.

    [22]

    Chiew CJ,Liu N,Tagami T,et al.Heart rate variability based machine learning models for risk prediction of suspected sepsis patients in the emergency department[J].Medicine,2019,98(6):14197.

    [23]

    Perng JW,Kao IH,Kung CT,et al.Mortality prediction of septic patients in the emergency department based on machine learning[J].J Clin Med,2019,8(11):1906.

    [24]

    Rau CS,Wu SC,Chuang JF,et al.Machine learning models of survival prediction in trauma patients[J].J Clin Med,2019,8(6):799.

    [25]

    Feng JZ,Wang Y,Peng J,et al.Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries[J].J Crit Care,2019,54:110-116.

    [26]

    Liu N,Cao JW,Koh ZX,et al.Risk stratification with extreme learning machine:A retrospective study on emergency department patients[J].Mathematical Problems in Engineering,2014,2014.

    [27]

    Daniel L,Martin H.Machine learning for improved detection of myocardial infarction in patients presenting with chest pain in the emergency department[J].J Am Coll Cardiol,2018,71(11):A225.

    [28]

    Hinson JS,Martinez DA,Grams MS,et al.Prediction of acute kidney injury in the emergency department using electronic health record data and machine learning methods[J].Ann Emerg Med,2018,72(4):S154.

    [29]

    Bertsimas D,Dunn J,Steele DW,et al.Comparison of machine learning optimal classification trees with the pediatric emergency care applied research network head trauma decision rules[J].JAMA Pediatr,2019,173(7):648-656.

    [30]

    Lindsey R,Daluiski A,Chopra S,et al.Deep neural network improves fracture detection by clinicians[J].Proc Natl Acad of Sci U S A,2018,115(45):11591-11596.

    [31]

    孔质彬,刘洁,张平文,等.急诊科面对传染病的挑战[J].中华医院感染学杂志,2008,18(8):1078.

    [32]

    Feldman J,Thomas-Bachli A,Forsyth J,et al.Development of a global infectious disease activity database using natural language processing,machine learning,and human expertise[J].J Am Med Inform Assoc,2019,26(11):1355-1359.

    [33]

    Chae S,Kwon S,Lee D.Predicting infectious disease using deep learning and big data[J].Int J Environ Res Public Health,2018,15(8):1596.

    [34]

    Ye Y,Wagner MM,Cooper GF,et al.A study of the transferability of influenza case detection systems between two large healthcare systems[J].PloS One,2017,12(4):0174970.

    [35]

    Núňez RA,Armengol de la Hoz MA,Sánchez GM.Big data analysis and machine learning in intensive care units[J].Med Intensiva,2019,43(7):416-426.

    [36]

    倪主昂,吕丹,张柯基,等.中心静脉-动脉二氧化碳分压差与动脉-中心静脉氧含量差的比值(Pcv-aCO2/Ca-cvO2)变化率对急诊重症监护室脓毒症患者预后的评估价值[J].现代生物医学进展,2019,19(16):3073-3079.

    [37]

    Oh J,Cho D,Park J,et al.Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning[J].Physiol Meas,2018,39(3):035004.

    [38]

    Sánchez Fernández I,Sansevere AJ,Gaínza-Lein M,et al.Machine learning for outcome prediction in electroencephalograph (EEG)-monitored children in the intensive care unit[J].J Child Neurol,2018,33(8):546-553.

    [39]

    Saugel B,Kouz K,Hoppe P,et al.Predicting hypotension in perioperative and intensive care medicine[J].Best Pract Rese Clin Anaesthesiol,2019,33(2):189-197.

    [40]

    Cramer EM,Seneviratne MG,Sharifi H,et al.Predicting the incidence of pressure ulcers in the intensive care unit using machine learning[J].EGEMS(Washington,DC),2019,7(1):49.

    [41]

    Ouchi K,Lindvall C,Chai PR,et al.Machine learning to predict,detect,and intervene older adults vulnerable for adverse drug events in the emergency department[J],J Med Toxicol,2018,14(3):248-252.

    [42]

    Delahanty RJ,Kaufman D,Jones SS.Development and evaluation of an automated machine learning algorithm for in-hospital mortality risk adjustment among critical care patients[J].Crit Care Med,2018,46(6):481-488.

    [43]

    Holmgren G,Andersson P,Jakobsson A,et al.Artificial neural networks improve and simplify intensive care mortality prognostication:a national cohort study of 217,289 first-time intensive care unit admissions[J].J Intensive Care,2019,7(1):44.

  • 加载中
计量
  • 文章访问数:  242
  • PDF下载数:  612
  • 施引文献:  0
出版历程
收稿日期:  2020-04-16

目录