-
摘要: 脓毒症是一种异质性疾病,抗生素和器官支持等传统治疗在改善患者预后方面存在诸多挑战。近年来的研究表明肠道菌群不仅在脓毒症的发生和发展中扮演重要角色,还在维持免疫稳态中起到关键作用。本综述从肠道菌群的基本特征、免疫功能及肠道菌群与脓毒症免疫调节的相互作用等方面分析肠道菌群在调节免疫功能中的作用,并对肠道菌群治疗脓毒症的策略进行总结,为肠道菌群治疗脓毒症的相关研究提供新的思路。Abstract: Sepsis is a heterogeneous disease, and conventional treatments, including antibiotics and organ support, face significant challenges in improving patient outcomes. Recent research has demonstrated that gut microbiota not only play a critical role in the onset and progression of sepsis but also in maintaining immune homeostasis. This review examines the role of gut microbiota in immune regulation by exploring their fundamental characteristics, immune functions, and interactions with the immune system in sepsis. Furthermore, it outlines strategies for utilizing gut microbiota in sepsis treatment, offering new perspectives for future research.
-
Key words:
- sepsis /
- gut microbiota /
- inflammatory factor /
- immunoreaction /
- antibiotic
-
[1] Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287
[2] Liu YC, Yao Y, Yu MM, et al. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis[J]. BMC Infect Dis, 2022, 22(1): 564. doi: 10.1186/s12879-022-07543-8
[3] Wang W, Liu CF. Sepsis heterogeneity[J]. World J Pediatr, 2023, 19(10): 919-927. doi: 10.1007/s12519-023-00689-8
[4] Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy[J]. Nat Rev Immunol, 2013, 13: 862-874. doi: 10.1038/nri3552
[5] van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets[J]. Nat Rev Immunol, 2017, 17: 407-420. doi: 10.1038/nri.2017.36
[6] Almeida A, Mitchell AL, Boland M, et al. A new genomic blueprint of the human gut microbiota[J]. Nature, 2019, 568: 499-504. doi: 10.1038/s41586-019-0965-1
[7] Liu S, Yang X. Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer[J]. Front Cell Infect Microbiol, 2023, 13: 1140126. doi: 10.3389/fcimb.2023.1140126
[8] Liu Y, Baba Y, Ishimoto T, et al. Gut microbiome in gastrointestinal cancer: a friend or foe?[J]. Int J Biol Sci, 2022, 18(10): 4101-4117. doi: 10.7150/ijbs.69331
[9] Shin Y, Han S, Kwon J, et al. Roles of short-chain fatty acids in inflammatory bowel disease[J]. Nutrients, 2023, 15(20): 4466. doi: 10.3390/nu15204466
[10] Hou KJ, Wu ZX, Chen XY, et al. Microbiota in health and diseases[J]. Signal Transduct Target Ther, 2022, 7: 135. doi: 10.1038/s41392-022-00974-4
[11] Bouskra D, Brézillon C, Bérard M, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis[J]. Nature, 2008, 456: 507-510. doi: 10.1038/nature07450
[12] Quiroz-Olguín G, Gutiérrez-Salmeán G, Posadas-Calleja JG, et al. The effect of enteral stimulation on the immune response of the intestinal mucosa and its application in nutritional support[J]. Eur J Clin Nutr, 2021, 75: 1533-1539. doi: 10.1038/s41430-021-00877-7
[13] Zhou B, Yuan Y, Zhang S, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract[J]. Front Immunol, 2020, 11: 575. doi: 10.3389/fimmu.2020.00575
[14] Liu H, Xi QL, Tan SJ, et al. The metabolite butyrate produced by gut microbiota inhibits Cachexia-associated skeletal muscle atrophy by regulating intestinal barrier function and macrophage polarization[J]. Int Immunopharmacol, 2023, 124: 111001. doi: 10.1016/j.intimp.2023.111001
[15] Chakrabarti A, Geurts L, Hoyles L, et al. The microbiota-gut-brain axis: pathways to better brain health. perspectives on what we know, what we need to investigate and how to put knowledge into practice[J]. Cell Mol Life Sci, 2022, 79(2): 80. doi: 10.1007/s00018-021-04060-w
[16] Wang QW, Yang QY, Liu XY. The microbiota-gut-brain axis and neurodevelopmental disorders[J]. Protein Cell, 2023, 14(10): 762-775. doi: 10.1093/procel/pwad026
[17] Nedeva C, Menassa J, Puthalakath H. Sepsis: inflammation is a necessary evil[J]. Front Cell Dev Biol, 2019, 7: 108. doi: 10.3389/fcell.2019.00108
[18] Nedeva C. Inflammation and cell death of the innate and adaptive immune system during sepsis[J]. Biomolecules, 2021, 11(7): 1011. doi: 10.3390/biom11071011
[19] Han Y, Qiu L, Wu H, et al. Focus on the cGAS-STING signaling pathway in sepsis and its inflammatory regulatory effects[J]. J Inflamm Res, 2024, 17: 3629-3639. doi: 10.2147/JIR.S465978
[20] Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis[J]. Signal Transduct Target Ther, 2021, 6: 407. doi: 10.1038/s41392-021-00816-9
[21] Wang WH, He ZH. Gasdermins in sepsis[J]. Front Immunol, 2023, 14: 1203687. doi: 10.3389/fimmu.2023.1203687
[22] Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options[J]. Mil Med Res, 2022, 9(1): 56.
[23] Chen CW, Bennion KB, Swift DA, et al. Tumor-specific T cells exacerbate mortality and immune dysregulation during sepsis[J]. J Immunol, 2021, 206(10): 2412-2419. doi: 10.4049/jimmunol.2000865
[24] Delano MJ, Ward PA. The immune system's role in sepsis progression, resolution, and long-term outcome[J]. Immunol Rev, 2016, 274(1): 330-353. doi: 10.1111/imr.12499
[25] Lélu K, Dubois C, Evlachev A, et al. Viral delivery of IL-7 is a potent immunotherapy stimulating innate and adaptive immunity and confers survival in sepsis models[J]. J Immunol, 2022, 209(1): 99-117. doi: 10.4049/jimmunol.2101145
[26] Loh JS, Mak WQ, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases[J]. Signal Transduct Target Ther, 2024, 9: 37. doi: 10.1038/s41392-024-01743-1
[27] Torres LK, Pickkers P, van der Poll T. Sepsis-induced immunosuppression[J]. Annu Rev Physiol, 2022, 84: 157-181. doi: 10.1146/annurev-physiol-061121-040214
[28] Chen Z, Chang X, Ye Q, et al. Kidney transplantation and gut microbiota[J]. Clin Kidney J, 2024, 17(8): sfae214. doi: 10.1093/ckj/sfae214
[29] Park G, Munley JA, Kelly LS, et al. Gut mycobiome dysbiosis after sepsis and trauma[J]. Crit Care, 2024, 28(1): 18. doi: 10.1186/s13054-023-04780-4
[30] Yang H, Shao Y, Hu Y, et al. Fecal microbiota from patients with Parkinson's disease intensifies inflammation and neurodegeneration in A53T mice[J]. CNS Neurosci Ther, 2024, 30(8): e70003. doi: 10.1111/cns.70003
[31] Wang C, Li Q, Ren J. Microbiota-immune interaction in the pathogenesis of gut-derived infection[J]. Front Immunol, 2019, 10: 1873. doi: 10.3389/fimmu.2019.01873
[32] van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis[J]. Immunity, 2021, 54(11): 2450-2464. doi: 10.1016/j.immuni.2021.10.012
[33] Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489: 231-241. doi: 10.1038/nature11551
[34] Miller WD, Keskey R, Alverdy JC. Sepsis and the microbiome: a vicious cycle[J]. J Infect Dis, 2021, 223(12 suppl 2): S264-S269.
[35] Zaborin A, Smith D, Garfield K, et al. Membership and behavior of ultra-low-diversity pathogen communities present in the gut of humans during prolonged critical illness[J]. mBio, 2014, 5(5): e01361-14.
[36] Wiersinga WJ, van der Poll T. Immunopathophysiology of human sepsis[J]. EBioMedicine, 2022, 86: 104363. doi: 10.1016/j.ebiom.2022.104363
[37] Gaines S, Alverdy JC. Fecal micobiota transplantation to treat sepsis of unclear etiology[J]. Crit Care Med, 2017, 45(6): 1106-1107. doi: 10.1097/CCM.0000000000002382
[38] Takiishi T, Fenero CIM, Camara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life[J]. Tissue Barriers, 2017, 5(4): e1373208. doi: 10.1080/21688370.2017.1373208
[39] Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications[J]. Exp Mol Med, 2018, 50: 1-9.
[40] Suez J, Zmora N, Zilberman-Schapira G, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT[J]. Cell, 2018, 174(6): 1406-1423. e16. doi: 10.1016/j.cell.2018.08.047
[41] Ramirez J, Guarner F, Bustos Fernandez L, et al. Antibiotics as major disruptors of gut microbiota[J]. Front Cell Infect Microbiol, 2020, 10: 572912. doi: 10.3389/fcimb.2020.572912
[42] Wozniak H, Beckmann TS, Fröhlich L, et al. The central and biodynamic role of gut microbiota in critically ill patients[J]. Crit Care, 2022, 26(1): 250. doi: 10.1186/s13054-022-04127-5
[43] Kang YB, Kang X, Yang H, et al. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability[J]. Pharmacol Res, 2022, 175: 106020. doi: 10.1016/j.phrs.2021.106020
[44] Lou X, Xue J, Shao R, et al. Fecal microbiota transplantation and short-chain fatty acids reduce sepsis mortality by remodeling antibiotic-induced gut microbiota disturbances[J]. Front Immunol, 2022, 13: 1063543.
[45] Chen Y, Sun K, Qi Y, et al. L-valine derived from the gut microbiota protects sepsis-induced intestinal injury and negatively correlates with the severity of sepsis[J]. Front Immunol, 2024, 15: 1424332. doi: 10.3389/fimmu.2024.1424332
[46] Keskey R, Cone JT, DeFazio JR, et al. The use of fecal microbiota transplant in sepsis[J]. Transl Res, 2020, 226: 12-25. doi: 10.1016/j.trsl.2020.07.002
[47] Yu X, Ou J, Wang L, et al. Gut microbiota modulate CD8+T cell immunity in gastric cancer through Butyrate/GPR109A/HOPX[J]. Gut Microbes, 2024, 16(1): 2307542. doi: 10.1080/19490976.2024.2307542
[48] Li Y, Xu Y, Le Roy C, et al. Interplay between the(poly)phenol metabolome, gut microbiome, and cardiovascular health in women: a cross-sectional study from the TwinsUK cohort[J]. Nutrients, 2023, 15(8): 1900. doi: 10.3390/nu15081900
[49] Li C, Qi X, Xu L, et al. Preventive effect of the total polyphenols from Nymphaea candida on sepsis-induced acute lung injury in mice via gut microbiota and NLRP3, TLR-4/NF-κB pathway[J]. Int J Mol Sci, 2024, 25(8): 4276. doi: 10.3390/ijms25084276
[50] Fu Y, Zhang S, Yue Q, et al. The preventative effects of Lactococcus Lactis metabolites against LPS-induced sepsis[J]. Front Microbiol, 2024, 15: 1404652. doi: 10.3389/fmicb.2024.1404652
[51] Potruch A, Schwartz A, Ilan Y. The role of bacterial translocation in sepsis: a new target for therapy[J]. Therap Adv Gastroenterol, 2022, 15: 17562848221094214. doi: 10.1177/17562848221094214
[52] Chang BT, Wang Y, Tu WL, et al. Regulatory effects of mangiferin on LPS-induced inflammatory responses and intestinal flora imbalance during sepsis[J]. Food Sci Nutr, 2024, 12(3): 2068-2080. doi: 10.1002/fsn3.3907
[53] Chen H, Yu Z, Qi Z, et al. Tongfu Lifei Decoction attenuated sepsis-related intestinal mucosal injury through regulating Th17/treg balance and modulating gut microbiota[J]. J Interferon Cytokine Res, 2024, 44(5): 208-220. doi: 10.1089/jir.2024.0001
[54] Su J, Guan B, Su Q, et al. Fucoxanthin ameliorates sepsis via modulating microbiota by targeting IRF3 activation[J]. Int J Mol Sci, 2023, 24(18): 13803. doi: 10.3390/ijms241813803
[55] Adelman MW, Woodworth MH, Langelier C, et al. The gut microbiome's role in the development, maintenance, and outcomes of sepsis[J]. Crit Care, 2020, 24(1): 278. doi: 10.1186/s13054-020-02989-1
[56] van den Elsen LW, Poyntz HC, Weyrich LS, et al. Embracing the gut microbiota: the new frontier for inflammatory and infectious diseases[J]. Clin Transl Immunology, 2017, 6(1): e125. doi: 10.1038/cti.2016.91
[57] Tang Y, Chen L, Yang J, et al. Gut microbes improve prognosis of Klebsiella pneumoniae pulmonary infection through the lung-gut axis[J]. Front Cell Infect Microbiol, 2024, 14: 1392376. doi: 10.3389/fcimb.2024.1392376
计量
- 文章访问数: 135
- 施引文献: 0