Oxygen therapy strategy for cardiopulmonary resuscitation: from airway establishment to ventilator support
-
摘要: 心脏骤停致死率高、致残率高,是世界范围内严重威胁人民生命的公共卫生问题,心肺复苏的关键是保证器官氧供,及时恢复心脏自主功能。随着心肺复苏术教育知识的普及,胸外按压技术已被大众所了解,但是呼吸支持也十分重要,各种通气方式使用的优劣尚未得到明确,掌握正确和合理的复苏方法及氧疗策略,对提高心脏骤停患者的抢救成功率和改善预后有重要意义。本文现结合国内外有关文献,对目前心肺复苏中常用的气道建立方式和呼吸机支持技术进行总结和概述,以期对心脏骤停的救治和相关研究提供帮助。Abstract: Cardiac arrest has a high mortality rate and disability rate, which is a serious public health problem that threatens people's lives worldwide. The key to cardiopulmonary resuscitation is to ensure organ oxygen supply and timely restoration of cardiac autonomic function. With the popularization of education on cardiopulmonary resuscitation, chest compressions have been widely understood by the public. However, respiratory support is also very important, and the advantages and disadvantages of various ventilation methods have not been clearly defined. Mastering correct and reasonable resuscitation methods and oxygen therapy strategies is of great significance for improving the success rate and prognosis of patients with cardiac arrest. This article summarizes and summarizes the commonly used airway establishment methods and ventilator support technologies in current cardiopulmonary resuscitation, based on relevant literature at home and abroad, in order to provide assistance for the treatment and related research of cardiac arrest.
-
-
[1] Panchal AR, Bartos JA, Cabañas JG, et al. Part 3: adult basic and advanced life support: 2020 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2020, 142(16_suppl_2): S366-S468.
[2] Høybye M, Stankovic N, Holmberg M, et al. In-hospital vs. out-of-hospital cardiac arrest: patient characteristics and survival[J]. Resuscitation, 2021, 158: 157-165. doi: 10.1016/j.resuscitation.2020.11.016
[3] 中国心脏骤停与心肺复苏报告编写组. 中国心脏骤停与心肺复苏报告(2022年版)概要[J]. 中国循环杂志, 2023, 38(10): 1005-1017.
[4] van Eijk JA, Doeleman LC, Loer SA, et al. Ventilation during cardiopulmonary resuscitation: a narrative review[J]. Resuscitation, 2024, 203: 110366. doi: 10.1016/j.resuscitation.2024.110366
[5] van Schuppen H, Boomars R, Kooij FO, et al. Optimizing airway management and ventilation during prehospital advanced life support in out-of-hospital cardiac arrest: a narrative review[J]. Best Pract Res Clin Anaesthesiol, 2021, 35(1): 67-82. doi: 10.1016/j.bpa.2020.11.003
[6] Yang ZZ, Liang HR, Li JY, et al. Comparing the efficacy of bag-valve mask, endotracheal intubation, and laryngeal mask airway for subjects with out-of-hospital cardiac arrest: an indirect meta-analysis[J]. Ann Transl Med, 2019, 7(12): 257. doi: 10.21037/atm.2019.05.21
[7] Gerber L, Botha M, Laher AE. Modified two-rescuer CPR with a two-handed mask-face seal technique is superior to conventional two-rescuer CPR with a one-handed mask-face seal technique[J]. J Emerg Med, 2021, 61(3): 252-258. doi: 10.1016/j.jemermed.2021.03.005
[8] 李清. 气囊面罩联合机械通气在气管插管前的应用研究[J]. 现代诊断与治疗, 2022, 33(7): 1008-1010.
[9] Jabre P, Penaloza A, Pinero D, et al. Effect of bag-mask ventilation vs endotracheal intubation during cardiopulmonary resuscitation on neurological outcome after out-of-hospital cardiorespiratory arrest: a randomized clinical trial[J]. JAMA, 2018, 319(8): 779-787. doi: 10.1001/jama.2018.0156
[10] Lupton JR, Schmicker RH, Stephens S, et al. Outcomes with the use of bag-valve-mask ventilation during out-of-hospital cardiac arrest in the pragmatic airway resuscitation trial[J]. Acad Emerg Med, 2020, 27(5): 366-374. doi: 10.1111/acem.13927
[11] Chang H, Jeong D, Park JE, et al. Prehospital airway management for out-of-hospital cardiac arrest: a nationwide multicenter study from the KoCARC registry[J]. Acad Emerg Med, 2022, 29(5): 581-588. doi: 10.1111/acem.14443
[12] Jung E, Ro YS, Ryu HH, et al. Association of prehospital airway management technique with survival outcomes of out-of-hospital cardiac arrest patients[J]. PLoS One, 2022, 17(6): e0269599. doi: 10.1371/journal.pone.0269599
[13] Smida T, Menegazzi J, Crowe R, et al. A retrospective nationwide comparison of the iGel and king laryngeal tube supraglottic airways for out-of-hospital cardiac arrest resuscitation[J]. Prehosp Emerg Care, 2024, 28(2): 193-199. doi: 10.1080/10903127.2023.2169422
[14] Smida T, Menegazzi J, Scheidler J, et al. A retrospective comparison of the king laryngeal tube and iGel supraglottic airway devices: a study for the CARES surveillance group[J]. Resuscitation, 2023, 188: 109812. doi: 10.1016/j.resuscitation.2023.109812
[15] Segond N, Bellier A, Duhem H, et al. Supraglottic airway device to improve ventilation success and reduce pulmonary aspiration during cardio-pulmonary resuscitation by basic life support rescuers: a randomized cross-over human cadaver study[J]. Prehosp Emerg Care, 2023, 27(5): 695-703. doi: 10.1080/10903127.2022.2075994
[16] Schoenthal T, Hoiland R, Griesdale DE, et al. Cerebral hemodynamics after cardiac arrest: implications for clinical management[J]. Minerva Anestesiol, 2023, 89(9): 824-833.
[17] Wang CH, Lee AF, Chang WT, et al. Comparing effectiveness of initial airway interventions for out-of-hospital cardiac arrest: a systematic review and network meta-analysis of clinical controlled trials[J]. Ann Emerg Med, 2020, 75(5): 627-636. doi: 10.1016/j.annemergmed.2019.12.003
[18] Bielski A, Smereka J, Madziala M, et al. Comparison of blind intubation with different supraglottic airway devices by inexperienced physicians in several airway scenarios: a manikin study[J]. Eur J Pediatr, 2019, 178(6): 871-882. doi: 10.1007/s00431-019-03345-4
[19] Benger JR, Kirby K, Black S, et al. Supraglottic airway device versus tracheal intubation in the initial airway management of out-of-hospital cardiac arrest: the AIRWAYS-2 cluster RCT[J]. Health Technol Assess, 2022, 26(21): 1-158. doi: 10.3310/VHOH9034
[20] Wang HE, Schmicker RH, Daya MR, et al. Effect of a strategy of initial laryngeal tube insertion vs endotracheal intubation on 72-hour survival in adults with out-of-hospital cardiac arrest: a randomized clinical trial[J]. JAMA, 2018, 320(8): 769-778. doi: 10.1001/jama.2018.7044
[21] Lee AF, Chien YC, Lee BC, et al. Effect of placement of a supraglottic airway device vs endotracheal intubation on return of spontaneous circulation in adults with out-of-hospital cardiac arrest in Taipei, Taiwan: a cluster randomized clinical trial[J]. JAMA Netw Open, 2022, 5(2): e2148871. doi: 10.1001/jamanetworkopen.2021.48871
[22] Andersen LW, Granfeldt A, Callaway CW, et al. Association between tracheal intubation during adult in-hospital cardiac arrest and survival[J]. JAMA, 2017, 317(5): 494-506. doi: 10.1001/jama.2016.20165
[23] Wang CH, Chen WJ, Chang WT, et al. The association between timing of tracheal intubation and outcomes of adult in-hospital cardiac arrest: a retrospective cohort study[J]. Resuscitation, 2016, 105: 59-65. doi: 10.1016/j.resuscitation.2016.05.012
[24] Carney N, Totten AM, Cheney T, et al. Prehospital airway management: a systematic review[J]. Prehosp Emerg Care, 2022, 26(5): 716-727. doi: 10.1080/10903127.2021.1940400
[25] Song SR, Kim KH, Park JH, et al. Association between prehospital airway type and oxygenation and ventilation in out-of-hospital cardiac arrest[J]. Am J Emerg Med, 2023, 65: 24-30. doi: 10.1016/j.ajem.2022.12.021
[26] Tang Y, Sun M, Zhu A. Outcome of cardiopulmonary resuscitation with different ventilation modes in adults: a meta-analysis[J]. Am J Emerg Med, 2022, 57: 60-69. doi: 10.1016/j.ajem.2022.04.027
[27] 赖文清, 郭带珍. 不同通气方式对急诊心肺复苏患者治疗效果的影响[J]. 医学理论与实践, 2020, 33(20): 3367-3369.
[28] Murphy DL, Bulger NE, Harrington BM, et al. Fewer tracheal intubation attempts are associated with improved neurologically intact survival following out-of-hospital cardiac arrest[J]. Resuscitation, 2021, 167: 289-296. doi: 10.1016/j.resuscitation.2021.07.001
[29] Neth MR, Idris A, McMullan J, et al. A review of ventilation in adult out-of-hospital cardiac arrest[J]. J Am Coll Emerg Physicians Open, 2020, 1(3): 190-201. doi: 10.1002/emp2.12065
[30] Newell C, Grier S, Soar J. Airway and ventilation management during cardiopulmonary resuscitation and after successful resuscitation[J]. Crit Care, 2018, 22(1): 190. doi: 10.1186/s13054-018-2121-y
[31] 叶朗熙, 吴国新, 陈盛安. 心肺复苏仪按压过程中不同通气模式的效果及对潮气量的影响[J]. 中国急救复苏与灾害医学杂志, 2024, 19(5): 565-568.
[32] Kill C, Hahn O, Dietz F, et al. Mechanical ventilation during cardiopulmonary resuscitation with intermittent positive-pressure ventilation, bilevel ventilation, or chest compression synchronized ventilation in a pig model[J]. Crit Care Med, 2014, 42(2): e89-95. doi: 10.1097/CCM.0b013e3182a63fa0
[33] Berg KM, Soar J, Andersen LW, et al. Adult advanced life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations[J]. Circulation, 2020, 142(16_suppl_1): S92-S139.
[34] Data S, Nelson BD, Cedrone K, et al. Real-time digital feedback device and simulated newborn ventilation quality[J]. Pediatrics, 2023, 152(5): e2022060599. doi: 10.1542/peds.2022-060599
[35] Mohnke K, Buschmann V, Baller T, et al. The influence of ultra-low tidal volume ventilation during cardiopulmonary resuscitation on renal and hepatic end-organ damage in a porcine model[J]. Biomedicines, 2023, 11(3): 899. doi: 10.3390/biomedicines11030899
[36] Fitz-Clarke JR. Effect of tidal volume on gas exchange during rescue ventilation[J]. Respir Physiol Neurobiol, 2020, 273: 103335. doi: 10.1016/j.resp.2019.103335
[37] Gordon GR. Neurovascular coupling during hypercapnia in cerebral blood flow regulation[J]. Nat Commun, 2024, 15(1): 7636. doi: 10.1038/s41467-024-50165-8
[38] Gendreau S, Geri G, Pham T, et al. The role of acute hypercapnia on mortality and short-term physiology in patients mechanically ventilated for ARDS: a systematic review and meta-analysis[J]. Intensive Care Med, 2022, 48(5): 517-534. doi: 10.1007/s00134-022-06640-1
[39] Eastwood G, Nichol AD, Hodgson C, et al. Mild hypercapnia or normocapnia after out-of-hospital cardiac arrest[J]. N Engl J Med, 2023, 389(1): 45-57. doi: 10.1056/NEJMoa2214552
[40] Hong SI, Kim JS, Kim YJ, et al. Dynamic changes in arterial blood gas during cardiopulmonary resuscitation in out-of-hospital cardiac arrest[J]. Sci Rep, 2021, 11(1): 23165. doi: 10.1038/s41598-021-02764-4
[41] Wang HE, Prince DK, Drennan IR, et al. Post-resuscitation arterial oxygen and carbon dioxide and outcomes after out-of-hospital cardiac arrest[J]. Resuscitation, 2017, 120: 113-118. doi: 10.1016/j.resuscitation.2017.08.244
[42] Shou BL, Ong CS, Premraj L, et al. Arterial oxygen and carbon dioxide tension and acute brain injury in extracorporeal cardiopulmonary resuscitation patients: analysis of the extracorporeal life support organization registry[J]. J Heart Lung Transplant, 2023, 42(4): 503-511. doi: 10.1016/j.healun.2022.10.019
[43] Solevåg AL, Garcia-Hidalgo C, Cheung PY, et al. Ventilation with 18, 21, or 100% oxygen during cardiopulmonary resuscitation of asphyxiated piglets: a randomized controlled animal trial[J]. Neonatology, 2020, 117(1): 102-110. doi: 10.1159/000504494
[44] Okuma Y, Becker LB, Hayashida K, et al. Effects of post-resuscitation normoxic therapy on oxygen-sensitive oxidative stress in a rat model of cardiac arrest[J]. J Am Heart Assoc, 2021, 10(7): e018773. doi: 10.1161/JAHA.120.018773
[45] Chang WT, Wang CH, Lai CH, et al. Optimal arterial blood oxygen tension in the early postresuscitation phase of extracorporeal cardiopulmonary resuscitation: a 15-year retrospective observational study[J]. Crit Care Med, 2019, 47(11): 1549-1556. doi: 10.1097/CCM.0000000000003938
[46] Xu Y, Peng F, Wang SY, et al. Lower versus higher oxygen targets after resuscitation from out-of-hospital cardiac arrest: a systematic review and meta-analysis of randomized controlled trials[J]. J Crit Care, 2024, 79: 154448. doi: 10.1016/j.jcrc.2023.154448
[47] Levenbrown Y, Hossain MJ, Keith JP, et al. The effect of positive end-expiratory pressure on cardiac output and oxygen delivery during cardiopulmonary resuscitation[J]. Intensive Care Med Exp, 2020, 8(1): 36. doi: 10.1186/s40635-020-00330-2
[48] Bastia L, Engelberts D, Osada K, et al. Role of positive end-expiratory pressure and regional transpulmonary pressure in asymmetrical lung injury[J]. Am J Respir Crit Care Med, 2021, 203(8): 969-976. doi: 10.1164/rccm.202005-1556OC
[49] Renz M, Müllejans L, Riedel J, et al. High PEEP levels during CPR improve ventilation without deleterious haemodynamic effects in pigs[J]. J Clin Med, 2022, 11(16): 4921. doi: 10.3390/jcm11164921
[50] Segond N, Terzi N, Duhem H, et al. Mechanical ventilation during cardiopulmonary resuscitation: influence of positive end-expiratory pressure and head-torso elevation[J]. Resuscitation, 2023, 185(10): 109685.
-
计量
- 文章访问数: 744
- PDF下载数: 199
- 施引文献: 0