颅内压监测在颅脑损伤中的应用进展

顾帅鹏, 龚嵩, 高伟. 颅内压监测在颅脑损伤中的应用进展[J]. 临床急诊杂志, 2024, 25(2): 87-92. doi: 10.13201/j.issn.1009-5918.2024.02.007
引用本文: 顾帅鹏, 龚嵩, 高伟. 颅内压监测在颅脑损伤中的应用进展[J]. 临床急诊杂志, 2024, 25(2): 87-92. doi: 10.13201/j.issn.1009-5918.2024.02.007
GU Shuaipeng, GONG Song, GAO Wei. Application progress of intracranial pressure monitoring in craniocerebral injury[J]. J Clin Emerg, 2024, 25(2): 87-92. doi: 10.13201/j.issn.1009-5918.2024.02.007
Citation: GU Shuaipeng, GONG Song, GAO Wei. Application progress of intracranial pressure monitoring in craniocerebral injury[J]. J Clin Emerg, 2024, 25(2): 87-92. doi: 10.13201/j.issn.1009-5918.2024.02.007

颅内压监测在颅脑损伤中的应用进展

详细信息
    通讯作者: 高伟, E-mail: gaobull@126.com

    Δ审校者

  • 中图分类号: R726.5

Application progress of intracranial pressure monitoring in craniocerebral injury

More Information
  • 颅脑损伤患者往往伴随着不同程度的颅内压(intracranial pressure,ICP)增高,ICP增高又是造成各种临床症状和不良预后的重要病理生理因素。临床上对创伤性颅脑损伤患者进行及时且有效的ICP监测能更及时准确地为临床治疗提供依据,利于患者预后。面对不同程度的颅脑损伤患者,选择合适的ICP监测工具有利于病情监测,减少患者痛苦。本文针对目前有创和无创ICP监测方式在颅脑损伤患者中的应用进展进行了全面的回顾和阐述,探讨临床无创监测ICP手段的发展方向和应用前景。
  • 加载中
  • [1]

    Kowalski RG, Hammond FM, Weintraub AH, et al. Recovery of Consciousness and Functional Outcome in Moderate and Severe Traumatic Brain Injury[J]. Jama Neurol, 2021, 78(5): 548. doi: 10.1001/jamaneurol.2021.0084

    [2]

    Capizzi A, Woo J, Verduzco-Gutierrez M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management[J]. Med Clin North Am, 2020, 104(2): 213-238. doi: 10.1016/j.mcna.2019.11.001

    [3]

    Güiza F, Depreitere B, Piper I, et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury[J]. Intensive Care Med, 2015, 41(6): 1067-76. doi: 10.1007/s00134-015-3806-1

    [4]

    Ramesh VJ, Chakrabarti D. Letter: Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition[J]. Neurosurgery, 2018, 82(5): E143. doi: 10.1093/neuros/nyy029

    [5]

    Hawryluk G, Citerio G, Hutchinson P, et al. Intracranial pressure: current perspectives on physiology and monitoring[J]. Intensive Care Med, 2022, 48(10): 1471-1481. doi: 10.1007/s00134-022-06786-y

    [6]

    Dattilo M. Noninvasive methods to monitor intracranial pressure[J]. Curr Opin Neurol, 2023, 36(1): 1-9. doi: 10.1097/WCO.0000000000001126

    [7]

    Müller SJ, Henkes E, Gounis MJ, et al. Non-Invasive Intracranial Pressure Monitoring[J]. J Clin Med, 2023, 12(6): .

    [8]

    Dossani RH, Patra DP, Terrell DL, et al. Placement of an External Ventricular Drain[J]. N Engl J Med, 2021, 384(2): e3. doi: 10.1056/NEJMvcm1805314

    [9]

    Aten Q, Killeffer J, Seaver C, et al. Causes, Complications, and Costs Associated with External Ventricular Drainage Catheter Obstruction[J]. World Neurosurg, 2020, 134: 501-506. doi: 10.1016/j.wneu.2019.10.105

    [10]

    Champey J, Mourey C, Francony G, et al. Strategies to reduce external ventricular drain-related infections: a multicenter retrospective study[J]. J Neurosurg, 2018: 1-6.

    [11]

    Ficarrotta KR, Passaglia CL. Intracranial pressure modulates aqueous humour dynamics of the eye[J]. J Physiol, 2020, 598(2): 403-413. doi: 10.1113/JP278768

    [12]

    Tilak AM, Yang LC, Morgan J, et al. Optic nerve sheath diameter correlates to intracranial pressure in spontaneous CSF leak patients[J]. Int Forum Allergy Rhinol, 2023, 13(8): 1518-1524. doi: 10.1002/alr.23120

    [13]

    Weidner N, Kretschmann J, Bomberg H, et al. Real-Time Evaluation of Optic Nerve Sheath Diameter(ONSD)in Awake, Spontaneously Breathing Patients[J]. J Clin Med, 2021, 10(16): .

    [14]

    Koziarz A, Sne N, Kegel F, et al. Bedside Optic Nerve Ultrasonography for Diagnosing Increased Intracranial Pressure: A Systematic Review and Meta-analysis[J]. Ann Intern Med, 2019, 171(12): 896-905. doi: 10.7326/M19-0812

    [15]

    Lin JJ, Chen AE, Lin EE, et al. Point-of-care ultrasound of optic nerve sheath diameter to detect intracranial pressure in neurocritically ill children-A narrative review[J]. Biomed J, 2020, 43(3): 231-239. doi: 10.1016/j.bj.2020.04.006

    [16]

    Giger-Tobler C, Eisenack J, Holzmann D, et al. Measurement of Optic Nerve Sheath Diameter: Differences between Methods? A Pilot Study[J]. Klin Monbl Augenheilkd, 2015, 232(4): 467-470. doi: 10.1055/s-0035-1545711

    [17]

    郑曙光, 项彦斌. 床旁即时超声测量视神经鞘直径与重型颅脑损伤患者术后颅内压增高的关系研究[J]. 临床急诊杂志, 2022, 23(10): 715-719. https://lcjz.whuhzzs.com/article/doi/10.13201/j.issn.1009-5918.2022.10.006

    [18]

    Chen LM, Wang LJ, Hu Y, et al. Ultrasonic measurement of optic nerve sheath diameter: a non-invasive surrogate approach for dynamic, real-time evaluation of intracranial pressure[J]. Br J Ophthalmol, 2019, 103(4): 437-441. doi: 10.1136/bjophthalmol-2018-312934

    [19]

    Huang S, Lund T, Orchard P, et al. Dilated Optic Nerve Sheath in Mucopolysaccharidosis I: Common and Not Necessarily High Intracranial Pressure[J]. AJNR Am J Neuroradiol, 2023, 44(1): 91-94. doi: 10.3174/ajnr.A7755

    [20]

    Youm JY, Lee JH, Park HS. Comparison of transorbital ultrasound measurements to predict intracranial pressure in brain-injured patients requiring external ventricular drainage[J]. J Neurosurg, 2022, 136(1): 257-263. doi: 10.3171/2021.1.JNS204218

    [21]

    Rufai SR, Marmoy OR, Thompson DA, et al. Electrophysiological and fundoscopic detection of intracranial hypertension in craniosynostosis[J]. Eye(Lond), 2023, 37(1): 139-145.

    [22]

    吴文娟, 任节, 张亮. 闪光视觉诱发电位在外伤性重型颅内出血术后患者颅内压监测中的价值[J]. 临床急诊杂志, 2021, 22(9): 614-618. https://lcjz.whuhzzs.com/article/doi/10.13201/j.issn.1009-5918.2021.09.009

    [23]

    Creel DJ. Visually evoked potentials[J]. Clin Neurophysiol, 2019, 9: 501-522.

    [24]

    Oddo M, Taccone F, Galimberti S, et al. Outcome Prognostication of Acute Brain Injury using the Neurological Pupil Index(ORANGE)study: protocol for a prospective, observational, multicentre, international cohort study[J]. BMJ Open, 2021, 11(5): e046948. doi: 10.1136/bmjopen-2020-046948

    [25]

    Lele AV, Wahlster S, Khadka S, et al. Neurological Pupillary Index and Disposition at Hospital Discharge following ICU Admission for Acute Brain Injury[J]. J Clin Med, 2023, 12(11): 3806. doi: 10.3390/jcm12113806

    [26]

    Mcnett M, Moran C, Janki C, et al. Correlations Between Hourly Pupillometer Readings and Intracranial Pressure Values[J]. J Neurosc Nurs, 2017, 49(4): 229-234. doi: 10.1097/JNN.0000000000000290

    [27]

    Stevens AR, Su Z, Toman E, et al. Optical pupillometry in traumatic brain injury: neurological pupil index and its relationship with intracranial pressure through significant event analysis[J]. Brain Inj, 2019, 33(8): 1032-1038. doi: 10.1080/02699052.2019.1605621

    [28]

    Moreno ME, Del Carpio-O'Donovan R. Neuroimaging in the diagnosis and treatment of intracranial pressure disorders[J]. Neurol Sci, 2023, 44(3): 845-858. doi: 10.1007/s10072-022-06478-x

    [29]

    Vijay V, Mollan SP, Mitchell JL, et al. Using Optical Coherence Tomography as a Surrogate of Measurements of Intracranial Pressure in Idiopathic Intracranial Hypertension[J]. JAMA Ophthalmol, 2020, 138(12): 1264-1271. doi: 10.1001/jamaophthalmol.2020.4242

    [30]

    Moss HE. Retinal Vein Changes as a Biomarker to Guide Diagnosis and Management of Elevated Intracranial Pressure[J]. Front Neurol, 2021, 12: 751370. doi: 10.3389/fneur.2021.751370

    [31]

    Morgan WH, Vukmirovic A, Abdul-Rahman A, et al. Zero retinal vein pulsation amplitude extrapolated model in non-invasive intracranial pressure estimation[J]. Sci Rep, 2022, 12(1): 5190. doi: 10.1038/s41598-022-09151-7

    [32]

    Abdul-Rahman A, Morgan W, Jo Khoo Y, et al. Linear interactions between intraocular, intracranial pressure, and retinal vascular pulse amplitude in the fourier domain[J]. PLoS One, 2022, 17(6): e0270557. doi: 10.1371/journal.pone.0270557

    [33]

    Andersen MS, Pedersen CB, Poulsen FR. A new novel method for assessing intracranial pressure using non-invasive fundus images: a pilot study[J]. Sci Rep, 2020, 10(1): 13062. doi: 10.1038/s41598-020-70084-0

    [34]

    Uryga A, Kazimierska A, Popek M, et al. Applying video motion magnification to reveal spontaneous tympanic membrane displacement as an indirect measure of intracranial pressure in patients with brain pathologies[J]. Acta Neurochir(Wien), 2023, 165(8): 2227-2235. doi: 10.1007/s00701-023-05681-9

    [35]

    Shimbles S, Dodd C, Banister K, et al. Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements[J]. Physiol Meas, 2005, 26(6): 1085-1092. doi: 10.1088/0967-3334/26/6/017

    [36]

    Campbell-Bell CM, Sharif SJ, Zhang T, et al. A vascular subtraction method for improving the variability of evoked tympanic membrane displacement measurements[J]. Physiol Meas, 2021, 42(2): 025001. doi: 10.1088/1361-6579/abe0ff

    [37]

    Wu J, He W, Chen WM, et al. Research on simulation and experiment of noninvasive intracranial pressure monitoring based on acoustoelasticity effects[J]. Med Devices(Auckl), 2013, 6: 123-131.

    [38]

    Ganslandt O, Mourtzoukos S, Stadlbauer A, et al. Evaluation of a novel noninvasive ICP monitoring device in patients undergoing invasive ICP monitoring: preliminary results[J]. J Neurosurg, 2018, 128(6): 1653-1660. doi: 10.3171/2016.11.JNS152268

    [39]

    Bershad EM, Urfy MZ, Pechacek A, et al. Intracranial pressure modulates distortion product otoacoustic emissions: a proof-of-principle study[J]. Neurosurgery, 2014, 75(4): 445-454; discussion 454-455. doi: 10.1227/NEU.0000000000000449

    [40]

    Kreitmayer C, Marcrum SC, Picou EM, et al. Subclinical conductive hearing loss significantly reduces otoacoustic emission amplitude: Implications for test performance[J]. Int J Pediatr Otorhinolaryngol, 2019, 123: 195-201. doi: 10.1016/j.ijporl.2019.05.025

    [41]

    Redon S, Elzière M, Kaphan E, et al. Contribution of Otoacoustic Emissions for Diagnosis of Atypical Or Recurrent Intracranial Hypotension. a Cases Series[J]. Headache J Head Face Pain, 2019, 59(8): 1374-1378. doi: 10.1111/head.13621

    [42]

    Megjhani M, Terilli K, Weinerman B, et al. A Deep Learning Framework for Deriving Noninvasive Intracranial Pressure Waveforms from Transcranial Doppler[J]. Ann Neurol, 2023, 94(1): 196-202. doi: 10.1002/ana.26682

    [43]

    Park C, Ryu SJ, Jeong BH, et al. Real-Time Noninvasive Intracranial State Estimation Using Unscented Kalman Filter[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(9): 1931-1938. doi: 10.1109/TNSRE.2019.2932273

    [44]

    Robba C, Cardim D, Tajsic T, et al. Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: A prospective observational study[J]. PLoS Med, 2017, 14(7): e1002356. doi: 10.1371/journal.pmed.1002356

    [45]

    Cardim D, Robba C, Czosnyka M, et al. Noninvasive Intracranial Pressure Estimation With Transcranial Doppler: A Prospective Observational Study[J]. J Neurosurg Anesthesiol, 2020, 32(4): 349-353. doi: 10.1097/ANA.0000000000000622

    [46]

    Lucinskas P, Deimantavicius M, Bartusis L, et al. Human ophthalmic artery as a sensor for non-invasive intracranial pressure monitoring: numerical modeling and in vivo pilot study[J]. Sci Rep, 2021, 11(1): 4736. doi: 10.1038/s41598-021-83777-x

    [47]

    Killer HE. Letter: Validation of Noninvasive Absolute Intracranial Pressure Measurements in Traumatic Brain Injury and Intracranial Hemorrhage[J]. Oper Neurosurg(Hagerstown), 2019, 17(6): E274-E275. doi: 10.1093/ons/opz269

    [48]

    Krakauskaite S, Petkus V, Bartusis L, et al. Accuracy, Precision, Sensitivity and Specificity of Noninvasive ICP Absolute Value Measurements[J]. Acta Neurochirurgica Supplement, 2016: 317-321.

    [49]

    Alkhachroum A, Appavu B, Egawa S, et al. Electroencephalogram in the intensive care unit: a focused look at acute brain injury[J]. Intensive Care Med, 2022, 48(10): 1443-1462. doi: 10.1007/s00134-022-06854-3

    [50]

    Chen H, Wang J, Mao S, et al. A new method of intracranial pressure monitoring by EEG power spectrum analysis[J]. Can J Neurol Sci, 2012, 39(4): 483-487. doi: 10.1017/S0317167100013998

    [51]

    Sanz-garcía A, Pérez-romero M, Pastor J, et al. Identifying causal relationships between EEG activity and intracranial pressure changes in neurocritical care patients[J]. J Neural Eng, 2018, 15(6): 066029. doi: 10.1088/1741-2552/aadeea

    [52]

    Kim K, Kim H, Song K, et al. Prediction of Increased Intracranial Pressure in Traumatic Brain Injury Using Quantitative Electroencephalogram in a Porcine Experimental Model[J]. Diagnostics, 2023, 13(3): 386. doi: 10.3390/diagnostics13030386

    [53]

    Sanz-Garcia A, Perez-Romero M, Pastor J, et al. [Is it possible to extract intracranial pressure information based on the EEG activity?][J]. Rev Neurol, 2019, 68(9): 375-383.

    [54]

    Ghosh A, Elwell C, Smith M. Cerebral Near-infrared Spectroscopy in Adults[J]. Anesth Amp, 2012, 115(6): 1373-1383.

    [55]

    Ruesch A, Schmitt S, Yang J, et al. Fluctuations in intracranial pressure can be estimated non-invasively using near-infrared spectroscopy in non-human primates[J]. J Cereb Blood Flow Metab, 2020, 40(11): 2304-2314. doi: 10.1177/0271678X19891359

    [56]

    Relander F, Ruesch A, Yang J, et al. Using near-infrared spectroscopy and a random forest regressor to estimate intracranial pressure[J]. Neurophotonics, 2022, 9(4): 045001.

    [57]

    Dixon B, Sharkey JM, Teo EJ, et al. Assessment of a Non-invasive Brain Pulse Monitor to Measure Intra-cranial Pressure Following Acute Brain Injury[J]. Med Devices: Evid Res, 2023, 16: 15-26. doi: 10.2147/MDER.S398193

  • 加载中
计量
  • 文章访问数:  325
  • PDF下载数:  75
  • 施引文献:  0
出版历程
收稿日期:  2023-08-08
刊出日期:  2024-02-10

目录