创伤失血性休克患者早期液体复苏的研究进展

董喜乐, 耿仕涛, 祝鑫, 等. 创伤失血性休克患者早期液体复苏的研究进展[J]. 临床急诊杂志, 2024, 25(1): 44-50. doi: 10.13201/j.issn.1009-5918.2024.01.009
引用本文: 董喜乐, 耿仕涛, 祝鑫, 等. 创伤失血性休克患者早期液体复苏的研究进展[J]. 临床急诊杂志, 2024, 25(1): 44-50. doi: 10.13201/j.issn.1009-5918.2024.01.009
DONG Xile, GENG Shitao, ZHU Xin, et al. Research progress in early fluid resuscitation in patients with traumatic hemorrhagic shock[J]. J Clin Emerg, 2024, 25(1): 44-50. doi: 10.13201/j.issn.1009-5918.2024.01.009
Citation: DONG Xile, GENG Shitao, ZHU Xin, et al. Research progress in early fluid resuscitation in patients with traumatic hemorrhagic shock[J]. J Clin Emerg, 2024, 25(1): 44-50. doi: 10.13201/j.issn.1009-5918.2024.01.009

创伤失血性休克患者早期液体复苏的研究进展

详细信息

Research progress in early fluid resuscitation in patients with traumatic hemorrhagic shock

More Information
  • 创伤失血性休克(traumatic hemorrhagic shock,THS)是创伤患者死亡的主要原因,早期控制出血和液体复苏是提高THS患者存活率的关键措施。随着对THS病理生理机制的深入研究,早期液体复苏已经成为共识,复苏策略也在不断改进,然而,在临床实际应用中,THS的早期液体复苏策略仍存在争议。文章对近年来有关THS早期液体复苏治疗进行综述,就液体复苏方法、液体复苏目标血压以及复苏液体的选择等问题,探讨了复苏最佳方式、液体和血压目标。并对近年来新出现的复苏液体和液体复苏辅助疗法进行探讨,为THS患者的早期液体复苏提供参考,对改善预后、提高存活率具有重要意义。
  • 加载中
  • [1]

    Wang IJ, Bae BK, Park SW, et al. Pre-hospital modified shock index for prediction of massive transfusion and mortality in trauma patients[J]. Am J Emerg Med, 2020, 38(2): 187-190. doi: 10.1016/j.ajem.2019.01.056

    [2]

    Wise R, Faurie M, Malbrain M, et al. Strategies for Intravenous Fluid Resuscitation in Trauma Patients[J]. World J Surg, 2017, 41(5): 1170-1183. doi: 10.1007/s00268-016-3865-7

    [3]

    Harris T, Davenport R, Mak M, et al. The Evolving Science of Trauma Resuscitation[J]. Emerg Med Clin North Am, 2018, 36(1): 85-106. doi: 10.1016/j.emc.2017.08.009

    [4]

    Melendez-Lugo JJ, Caicedo Y, Guzman-Rodriguez M, et al. Prehospital Damage Control: The Management of Volume, Temperature and Bleeding![J]. Colomb Med(Cali), 2020, 51(4): e4024486.

    [5]

    Gonzalez Posada MA, Biarnes Sune A, Naya Sieiro JM, et al. Damage Control Resuscitation in polytrauma patient[J]. Rev Esp Anestesiol Reanim(Engl Ed), 2019, 66(7): 394-404. doi: 10.1016/j.redar.2019.03.009

    [6]

    Krzych LJ, Czempik PF. Effect of fluid resuscitation with balanced solutions on platelets: In vitro simulation of 20% volume substitution[J]. Cardiol J, 2018, 25(2): 254-259.

    [7]

    Eastridge BJ, Holcomb JB, Shackelford S. Outcomes of traumatic hemorrhagic shock and the epidemiology of preventable death from injury[J]. Transfusion, 2019, 59(S2): 1423-1428. doi: 10.1111/trf.15161

    [8]

    Zhang J, Han D, Zhang K, et al. Observation on the effectiveness and safety of sodium bicarbonate Ringer's solution in the early resuscitation of traumatic hemorrhagic shock: a clinical single-center prospective randomized controlled trial[J]. Trials, 2022, 23(1): 825. doi: 10.1186/s13063-022-06752-5

    [9]

    Mayer AR, Dodd AB, Ling JM, et al. Survival rates and biomarkers in a large animal model of traumatic brain injury combined with two different levels of blood loss[J]. Shock, 2021, 55(4): 554-562. doi: 10.1097/SHK.0000000000001653

    [10]

    Dyer WB, Tung JP, Li Bassi G, et al. An ovine model of hemorrhagic shock and resuscitation to assess recovery of tissue oxygen delivery and oxygen debt and inform patient blood management[J]. Shock, 2021, 56(6): 1080-1091. doi: 10.1097/SHK.0000000000001805

    [11]

    Woodward L, Alsabri M. Permissive Hypotension vs. Conventional resuscitation in patients with trauma or hemorrhagic shock: A review[J]. Cureus, 2021, 13(7): e16487.

    [12]

    Muttath A, Annayappa Venkatesh L, Jose J, et al. Adverse outcomes due to aggressive fluid resuscitation in children: A prospective observational study[J]. J Pediatr Intensive Care, 2019, 8(2): 64-70. doi: 10.1055/s-0038-1667009

    [13]

    Giudice E, Crino C, Macri F, et al. Limited fluid volume resuscitation in severe shock unresponsive to initial fluid challenge: A pilot study in 10 cats[J]. Vet Anaesth Analg, 2018, 45(6): 782-787. doi: 10.1016/j.vaa.2018.06.010

    [14]

    Lu Y, Liu L, Wang J, et al. Controlled blood pressure elevation and limited fluid resuscitation in the treatment of multiple injuries in combination with shock[J]. Pak J Med Sci, 2018, 34(5): 1120-1124.

    [15]

    Owattanapanich N, Chittawatanarat K, Benyakorn T, et al. Risks and benefits of hypotensive resuscitation in patients with traumatic hemorrhagic shock: a meta-analysis[J]. Scand J Trauma Resusc Emerg Med, 2018, 26(1): 107. doi: 10.1186/s13049-018-0572-4

    [16]

    Lu X, Ying L, Wang H, et al. Efficacy comparison of restrictive versus massive fluid resuscitation in patients with traumatic hemorrhagic shock[J]. Am J Transl Res, 2022, 14(10): 7504-7511.

    [17]

    Jiang S, Wu M, Lu X, et al. Is restrictive fluid resuscitation beneficial not only for hemorrhagic shock but also for septic shock: A meta-analysis?[J]. Medicine(Baltimore), 2021, 100(12): e25143.

    [18]

    Safiejko K, Smereka J, Filipiak KJ, et al. Effectiveness and safety of hypotension fluid resuscitation in traumatic hemorrhagic shock: A systematic review and meta-analysis of randomized controlled trials[J]. Cardiol J, 2022, 29(3): 463-471. doi: 10.5603/CJ.a2020.0096

    [19]

    Chi Y, Jiang X, Chai J, et al. Protective effect of restrictive resuscitation on vascular endothelial glycocalyx in pigs with traumatic hemorrhagic shock[J]. Ann Transl Med, 2022, 10(4): 177. doi: 10.21037/atm-21-7004

    [20]

    Ho KH, Tarng YW, Chou YP, et al. Permissive hypotensive resuscitation in patients with traumatic hemorrhagic shock[J]. Scand J Trauma Resusc Emerg Med, 2019, 27(1): 14. doi: 10.1186/s13049-019-0595-5

    [21]

    刘克玄. 围术期液体管理核心问题解析[M]. 北京: 人民卫生出版社, 2018: 138-139. .

    [22]

    Morrison CA, Carrick MM, Norman MA, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial[J]. J Trauma, 2011, 70(3): 652-663.

    [23]

    Kudo D, Yoshida Y, Kushimoto S. Permissive hypotension/hypotensive resuscitation and restricted/controlled resuscitation in patients with severe trauma[J]. J Intensive Care, 2017, 5(1): 11. doi: 10.1186/s40560-016-0202-z

    [24]

    Leibowitz A, Brotfain E, Koyfman L, et al. Treatment of combined traumatic brain injury and hemorrhagic shock with fractionated blood products versus fresh whole blood in a rat model[J]. Eur J Trauma Emerg Surg, 2019, 45(2): 263-271. doi: 10.1007/s00068-018-0908-9

    [25]

    邵志林, 杜召辉, 王如意, 等. 不同目标血压复苏对创伤失血性休克患者外周血炎性因子和血流动力学的影响[J]. 中华危重病急救医学, 2019, 31(4): 428-433.

    [26]

    Bailey ZS, Leung LY, Yang X, et al. Prehospital Whole Blood Resuscitation Reduces Fluid Requirement While Maintaining Critical Physiology in a Model of Penetrating Traumatic Brain Injury and Hemorrhage: Implications on Resource-Limited Combat Casualty Care[J]. Shock, 2021, 55(4): 545-553. doi: 10.1097/SHK.0000000000001662

    [27]

    中国人民解放军急救医学专业委员会, 北京急诊医学学会, 中国急诊专科医联体. 创伤失血性休克中国急诊专家共识(2023)[J]. 临床急诊杂志, 2023, 24(12): 609-623. https://lcjz.whuhzzs.com/article/doi/10.13201/j.issn.1009-5918.2023.12.01

    [28]

    Edwards TH, Hoareau GL. Fluids of the Future[J]. Front Vet Sci, 2020, 7: 623227.

    [29]

    Spahn DR, Bouillon B, Cerny V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition[J]. Crit Care, 2019, 23(1): 98.

    [30]

    Semler MW, Self WH, Wanderer JP, et al. Balanced Crystalloids versus Saline in Critically Ill Adults[J]. N Engl J Med, 2018, 378(9): 829-839. doi: 10.1056/NEJMoa1711584

    [31]

    Moore HB, Moore EE, Chapman MP, et al. Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: a randomised trial[J]. Lancet, 2018, 392(10144): 283-291. doi: 10.1016/S0140-6736(18)31553-8

    [32]

    Semler MW, Self WH, Rice TW. Balanced Crystalloids versus Saline in Critically Ill Adults[J]. N Engl J Med, 2018, 378(20): 1951.

    [33]

    Han SJ, Zhou ZW, Yang C, et al. Hemorrhagic, hypovolemic shock resuscitated with Ringer's solution using bicarbonate versus lactate: A CONSORT-randomized controlled study comparing patient outcomes and blood inflammatory factors[J]. Medicine(Baltimore), 2022, 101(46): e31671.

    [34]

    Wang L, Lou J, Cao J, et al. Bicarbonate Ringer's solution for early resuscitation in hemorrhagic shock rabbits[J]. Ann Transl Med, 2021, 9(6): 462. doi: 10.21037/atm-21-97

    [35]

    Xu S, Qiu Z, Zheng C, et al. Effect of miR-21-3p on lung injury in rats with traumatic hemorrhagic shock resuscitated with sodium bicarbonate Ringer's solution[J]. Ann Transl Med, 2022, 10(24): 1331. doi: 10.21037/atm-22-5148

    [36]

    Oller L, Dyer WB, Santamaria L, et al. The effect of a novel intravenous fluid Oxsealife(R)on recovery from haemorrhagic shock in pigs[J]. Anaesthesia, 2019, 74(6): 765-777. doi: 10.1111/anae.14627

    [37]

    Khoraki J, Wickramaratne N, Kang HS, et al. Superior Survival Outcomes of a Polyethylene Glycol-20k Based Resuscitation Solution in a Preclinical Porcine Model of Lethal Hemorrhagic Shock[J]. Ann Surg, 2022, 275(5): e716-e724. doi: 10.1097/SLA.0000000000004070

    [38]

    Balzi A, Otsuki DA, Andrade L, et al. Can a Therapeutic Strategy for Hypotension Improve Cerebral Perfusion and Oxygenation in an Experimental Model of Hemorrhagic Shock and Severe Traumatic Brain Injury?[J]. Neurocrit Care, 2023, 39(2): 320-330. doi: 10.1007/s12028-023-01802-5

    [39]

    Bragin DE, Lara DA, Bragina OA, et al. Resuscitation Fluid with Drag Reducing Polymer Enhances Cerebral Microcirculation and Tissue Oxygenation After Traumatic Brain Injury Complicated by Hemorrhagic Shock[J]. Adv Exp Med Biol, 2018, 1072: 39-43.

    [40]

    Bragin DE, Bragina OA, Kameneva MV, et al. Resuscitation with Drag Reducing Polymers after Traumatic Brain Injury with Hemorrhagic Shock Reduces Microthrombosis and Oxidative Stress[J]. Adv Exp Med Biol, 2020, 1232: 39-45.

    [41]

    Bragin DE, Bragina OA, Trofimov A, et al. Improved Cerebral Perfusion Pressure and Microcirculation by Drag Reducing Polymer-Enforced Resuscitation Fluid After Traumatic Brain Injury and Hemorrhagic Shock[J]. Acta Neurochir Suppl, 2021, 131: 289-293.

    [42]

    Bragin DE, Bragina OA, Berliba L, et al. Addition of Drag-Reducing Polymers to Colloid Resuscitation Fluid Enhances Cerebral Microcirculation and Tissue Oxygenation After Traumatic Brain Injury Complicated by Hemorrhagic Shock[J]. Adv Exp Med Biol, 2021, 1269: 283-288.

    [43]

    Dobson GP, Letson HL. Far Forward gaps in hemorrhagic shock and prolonged field care: An update of ALM fluid therapy for field use[J]. J Spec Oper Med, 2020, 20(3): 128-134. doi: 10.55460/06VT-9IH4

    [44]

    Letson HL, Dobson GP. Adenosine, lidocaine and Mg2+(ALM)resuscitation fluid protects against experimental traumatic brain injury[J]. J Trauma Acute Care Surg, 2018, 84(6): 908-916. doi: 10.1097/TA.0000000000001874

    [45]

    Letson H, Dobson G. Adenosine, lidocaine and Mg2+(ALM)fluid therapy attenuates systemic inflammation, platelet dysfunction and coagulopathy after non-compressible truncal hemorrhage[J]. PLoS One, 2017, 12(11): e0188144. doi: 10.1371/journal.pone.0188144

    [46]

    White NJ, Asato C, Wenthe A, et al. Slow Intravenous Infusion of a Novel Damage Control Cocktail Decreases Blood Loss in a Pig Polytrauma Model[J]. J Spec Oper Med, 2023.

    [47]

    St John AE, Wang X, Ringgold K, et al. A Multifunctional, low-volume resuscitation cocktail improves vital organ blood flow and hemostasis in a pig model of polytrauma with traumatic brain injury[J]. J Clin Med, 2021, 10(23).

    [48]

    Deaton TG, Auten JD, Betzold R, et al. Fluid resuscitation in tactical combat casualty care, TCCC Guidelines Change 21-01.4 November 2021[J]. J Spec Oper Med, 2021, 21(4): 126-137. doi: 10.55460/JYLU-4OZ8

    [49]

    Rangrass G. Whole blood use in trauma resuscitation: targeting prehospital transfusion[J]. Curr Opin Anaesthesiol, 2022, 35(2): 146-149.

    [50]

    Thies KC, Truhlar A, Keene D, et al. Pre-hospital blood transfusion-an ESA survey of European practice[J]. Scand J Trauma Resusc Emerg Med, 2020, 28(1): 79.

    [51]

    Paydar S, Taheri Akerdi A, Nikseresht S, et al. Should we change our approach to resuscitating victims of femoral fracture? A clinical experience in a busy trauma hospital in Shiraz, Iran[J]. Chin J Traumatol, 2021, 24(1): 30-33.

    [52]

    Vanderspurt CK, Spinella PC, Cap AP, et al. The use of whole blood in US military operations in Iraq, Syria and Afghanistan since the introduction of low-titer Type O whole blood: feasibility, acceptability, challenges[J]. Transfusion, 2019, 59(3): 965-970.

    [53]

    Song BK, Light WR, Vandegriff KD, et al. Systemic and microvascular comparison of Lactated Ringer's solution, VIR-HBOC and alpha-alpha crosslinked haemoglobin-based oxygen carrier in a rat 10% topload model[J]. Artif Cells Nanomed Biotechnol, 2020, 48(1): 1079-1088.

    [54]

    Nugent WH, Sheppard FR, Dubick MA, et al. Microvascular and systemic impact of resuscitation with pegylated carboxyhemoglobin-based oxygen carrier or hetastarch in a rat model of transient hemorrhagic shock[J]. Shock, 2020, 53(4): 493-502.

    [55]

    Seno S, Wang J, Cao S, et al. Resuscitation with macromolecular superoxide dismutase/catalase mimetic polynitroxylated pegylated hemoglobin offers neuroprotection in guinea pigs after traumatic brain injury combined with hemorrhage shock[J]. BMC Neurosci, 2020, 21(1): 22.

    [56]

    DeSantis AJ, Weche M, Enten GA, et al. The chemokine(C-C motif)receptor 2 antagonist INCB3284 reduces fluid requirements and protects from hemodynamic decompensation during resuscitation from hemorrhagic shock[J]. Crit Care Explor, 2022, 4(5): e0701.

    [57]

    Weche M, DeSantis AJ, McGee MY, et al. Effects of chemokine(C-C motif)receptor 2 and 3 antagonists in rat models of hemorrhagic shock[J]. PLoS One, 2023, 18(4): e0284472.

    [58]

    Gonzales E, Chen H, Munuve R, et al. Valproic acid prevents hemorrhage-associated lethality and affects the acetylation pattern of cardiac histones[J]. Shock, 2006, 25(4): 395-401.

    [59]

    Shults C, Sailhamer EA, Li Y, et al. Surviving blood loss without fluid resuscitation[J]. J Trauma, 2008, 64(3): 629-638;discussion 638-640.

    [60]

    Bambakidis T, Dekker SE, Liu B, et al. Hypothermia and valproic acid activate prosurvival pathways after hemorrhage[J]. J Surg Res, 2015, 196(1): 159-165.

    [61]

    Causey MW, Miller S, Hoffer Z, et al. Beneficial effects of histone deacetylase inhibition with severe hemorrhage and ischemia-reperfusion injury[J]. J Surg Res, 2013, 184(1): 533-540.

    [62]

    Bebarta VS, Garrett N, Boudreau S, et al. Intravenous Hydroxocobalamin Versus Hextend Versus Control for Class Ⅲ Hemorrhage Resuscitation in a Prehospital Swine Model[J]. Mil Med, 2018, 183(11-12): e721-e729.

    [63]

    Paredes RM, Castaneda M, Mireles AA, et al. Comparison of hydroxocobalamin with other resuscitative fluids in volume-controlled and uncontrolled hemorrhage models in swine(Sus-scrofa)[J]. J Trauma Acute Care Surg, 2023, 95(2S Suppl 1): S120-S128.

    [64]

    Dekker SE, Nikolian VC, Sillesen M, et al. Different resuscitation strategies and novel pharmacologic treatment with valproic acid in traumatic brain injury[J]. J Neurosci Res, 2018, 96(4): 711-719.

  • 加载中
计量
  • 文章访问数:  793
  • PDF下载数:  1191
  • 施引文献:  0
出版历程
收稿日期:  2023-09-29
修回日期:  2023-12-19
刊出日期:  2024-01-10

目录