铁死亡在脓毒症相关脑病中的研究进展

吴晓颖, 李岩. 铁死亡在脓毒症相关脑病中的研究进展[J]. 临床急诊杂志, 2023, 24(8): 437-442. doi: 10.13201/j.issn.1009-5918.2023.08.009
引用本文: 吴晓颖, 李岩. 铁死亡在脓毒症相关脑病中的研究进展[J]. 临床急诊杂志, 2023, 24(8): 437-442. doi: 10.13201/j.issn.1009-5918.2023.08.009
WU Xiaoying, LI Yan. Progress in ferroptosis in sepsis-associated encephalopathy[J]. J Clin Emerg, 2023, 24(8): 437-442. doi: 10.13201/j.issn.1009-5918.2023.08.009
Citation: WU Xiaoying, LI Yan. Progress in ferroptosis in sepsis-associated encephalopathy[J]. J Clin Emerg, 2023, 24(8): 437-442. doi: 10.13201/j.issn.1009-5918.2023.08.009

铁死亡在脓毒症相关脑病中的研究进展

详细信息
    通讯作者: 李岩,E-mail:181599041@qq.com

    Δ审校者

  • 中图分类号: R459.7

Progress in ferroptosis in sepsis-associated encephalopathy

More Information
  • 综述脓毒症相关脑病(sepsis-associated encephalopathy,SAE)中铁死亡的发生机制及总结现有铁死亡相关药物的应用,并对靶向铁死亡的临床转化应用前景进行展望,为SAE的预防和治疗提供新的理论依据及策略。SAE是一种全身感染引起的认知障碍和急性中枢神经系统功能障碍,是脓毒症的一种严重且常见的并发症,它由缺氧、血脑屏障破坏、神经递质失衡、胶质细胞激活、轴突和神经元缺失引起的炎症。铁死亡发生是因为细胞内铁过载,使铁依赖的脂质代谢异常,氧化还原平衡被破坏,过氧化物蓄积而最终诱发细胞死亡。研究SAE发病机制中的铁死亡,论述抑制铁死亡可通过减少血脑屏障破坏和神经异常、认知障碍来预防SAE。
  • 加载中
  • [1]

    Gu M, Mei XL, Zhao YN. Sepsis and Cerebral Dysfunction: BBB Damage, Neuroinflammation, Oxidative Stress, Apoptosis and Autophagy as Key Mediators and the Potential Therapeutic Approaches[J]. Neurotox Res, 2021, 39(2): 489-503. doi: 10.1007/s12640-020-00270-5

    [2]

    杨静, 司君利. 脓毒症相关性脑病的研究进展[J]. 临床急诊杂志, 2019, 20(10): 828-832. doi: 10.13201/j.issn.1009-5918.2019.10.019

    [3]

    Sedlackova L, Korolchuk VI. Mitochondrial quality control as a key determinant of cell survival[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(4): 575-587. doi: 10.1016/j.bbamcr.2018.12.012

    [4]

    Wang J, Yang S, Jing G, et al. Inhibition of ferroptosis protects sepsis-associated encephalopathy[J]. Cytokine, 2023, 161: 156078. doi: 10.1016/j.cyto.2022.156078

    [5]

    Crippa IA, Subirà C, Vincent JL, et al. Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis[J]. Crit Care, 2018, 22(1): 327. doi: 10.1186/s13054-018-2258-8

    [6]

    吴晓颖, 李卓民, 李静青, 等. 类淋巴系统与脓毒症相关脑病的相关性研究[J]. 临床急诊杂志, 2022, 23(11): 794-799. doi: 10.13201/j.issn.1009-5918.2022.11.010 https://lcjz.whuhzzs.com/article/doi/10.13201/j.issn.1009-5918.2022.11.010

    [7]

    Li N, Wang W, Zhou H, et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury[J]. Free Radic Biol Med, 2020, 160: 303-318. doi: 10.1016/j.freeradbiomed.2020.08.009

    [8]

    Wei S, Bi J, Yang L, et al., Serum irisin levels are decreased in patients with sepsis, and exogenous irisin suppresses ferroptosis in the liver of septic mice[J]. Clin Transl Med, 2020, 10(5): e173.

    [9]

    Li J, Li M, Li L, et al. Hydrogen sulfide attenuates ferroptosis and stimulates autophagy by blocking mTOR signaling in sepsis-induced acute lung injury[J]. Mol Immunol, 2022, 141: 318-327. doi: 10.1016/j.molimm.2021.12.003

    [10]

    Li X, Ma N, Xu J, et al. Targeting Ferroptosis: Pathological Mechanism and Treatment of Ischemia-Reperfusion Injury[J]. Oxid Med Cell Longev, 2021, 2021: 1587922.

    [11]

    Saralkar P, Arsiwala T, Geldenhuys WJ. Nanoparticle formulation and in vitro efficacy testing of the mitoNEET ligand NL-1 for drug delivery in a brain endothelial model of ischemic reperfusion-injury[J]. Int J Pharm, 2020, 578: 119090. doi: 10.1016/j.ijpharm.2020.119090

    [12]

    Xu XE, Liu L, Wang YC, et al. Caspase-1 inhibitor exerts brain-protective effects against sepsis-associated encephalopathy and cognitive impairments in a mouse model of sepsis[J]. Brain Behav Immun, 2019, 80: 859-870. doi: 10.1016/j.bbi.2019.05.038

    [13]

    姚鹏, 陈勇, 李依玲, 等. 海马神经细胞铁死亡通过Nrf2/GPX4信号通路导致脓毒症相关性脑病大鼠认知功能障碍[J]. 中华危重病急救医学, 2019, 31(11): 1389-1394. doi: 10.3760/cma.j.issn.2095-4352.2019.11.015

    [14]

    Wu L, Ai ML, Feng Q, et al. Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication[J]. J Crit Care, 2019, 52: 172-179. doi: 10.1016/j.jcrc.2019.04.018

    [15]

    Hu Q, Zhou Q, Wu J, et al. The Role of Mitochondrial DNA in the Development of Ischemia Reperfusion Injury[J]. Shock, 2019, 51(1): 52-59. doi: 10.1097/SHK.0000000000001190

    [16]

    Shi Y, Han L, Zhang X, et al. Selenium Alleviates Cerebral Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Fusion and Ferroptosis[J]. Neurochem Res, 2022, 47(10): 2992-3002. doi: 10.1007/s11064-022-03643-8

    [17]

    Hu Y, Bi Y, Yao D, et al. Omi/HtrA2 Protease Associated Cell Apoptosis Participates in Blood-Brain Barrier Dysfunction[J]. Front Mol Neurosci, 2019, 12: 48. doi: 10.3389/fnmol.2019.00048

    [18]

    Wang P, Cui Y, Ren Q, et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis[J]. Cell Death Dis, 2021, 12(5): 447. doi: 10.1038/s41419-021-03725-5

    [19]

    Gopoju R, Panangipalli S, Kotamraju S. Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis[J]. Free Radic Biol Med, 2018, 118: 85-97. doi: 10.1016/j.freeradbiomed.2018.02.031

    [20]

    白丽花, 陈阳, 黄思佳, 等. 活性氧在敌草快中毒中的作用机制研究进展[J]. 临床急诊杂志, 2022, 23(8): 603-608. doi: 10.13201/j.issn.1009-5918.2022.08.012 https://lcjz.whuhzzs.com/article/doi/10.13201/j.issn.1009-5918.2022.08.012

    [21]

    Huang Y, Liu J, He J, et al. UBIAD1 alleviates ferroptotic neuronal death by enhancing antioxidative capacity by cooperatively restoring impaired mitochondria and Golgi apparatus upon cerebral ischemic/reperfusion insult[J]. Cell Biosci, 2022, 12(1): 42. doi: 10.1186/s13578-022-00776-9

    [22]

    Dietrich C, Hofmann TG. Ferroptosis Meets Cell-Cell Contacts[J]. Cells, 2021, 10(9): 2462. doi: 10.3390/cells10092462

    [23]

    Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. doi: 10.1038/s41580-020-00324-8

    [24]

    Shen J, Xu G, Zhu R, et al. PDGFR-β restores blood-brain barrier functions in a mouse model of focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2019, 39(8): 1501-1515. doi: 10.1177/0271678X18769515

    [25]

    Wang Y, Quan F, Cao Q, et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis[J]. J Adv Res, 2021, 28: 231-243. doi: 10.1016/j.jare.2020.07.007

    [26]

    Yan HF, Tuo QZ, Yin QZ, et al. The pathological role of ferroptosis in ischemia/reperfusion-relatedinjury[J]. Zool Res, 2020, 41(3): 220-230. doi: 10.24272/j.issn.2095-8137.2020.042

    [27]

    She X, Lan B, Tian H, et al. Cross Talk Between Ferroptosis and Cerebral Ischemia[J]. Front Neurosci, 2020, 14: 776. doi: 10.3389/fnins.2020.00776

    [28]

    Sanmarco LM, Polonio CM, Wheeler MA, et al. Functional immune cell-astrocyte interactions[J]. J Exp Med, 2021, 218(9): e20202715-23. doi: 10.1084/jem.20202715

    [29]

    Fricker M, Tolkovsky AM, Borutaite V, et al. Neuronal Cell Death[J]. Physiol Rev, 2018, 98(2): 813-880. doi: 10.1152/physrev.00011.2017

    [30]

    Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. doi: 10.1038/s41422-020-00441-1

    [31]

    黄毓慧, 张共鹏, 梁欢, 等. 抑制铁死亡可减轻脓毒症小鼠的心肌损伤: 脂钙蛋白-2的作用[J]. 南方医科大学学报, 2022, 42(2): 256-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJD202202018.htm

    [32]

    Burgetova R, Dusek P, Burgetova A, et al. Age-related magnetic susceptibility changes in deep grey matter and cerebral cortex of normal young and middle-aged adults depicted by whole brain analysis[J]. Quant Imaging Med Surg, 2021, 11(9): 3906-3919. doi: 10.21037/qims-21-87

    [33]

    Dusek P, Hofer T, Alexander J, et al. Cerebral Iron Deposition in Neurodegeneration[J]. Biomolecules, 2022, 12(5): 714. doi: 10.3390/biom12050714

    [34]

    Urrutia PJ, Borquez DA, Nunez MT. Inflaming the Brain with Iron[J]. Antioxidants, 2021, 10: 61. doi: 10.3390/antiox10010061

    [35]

    Hinarejos I, Machuca-Arellano C, Sancho P, et al. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflflammationin Neurodegeneration with Brain Iron Accumulation(Nbia)[J]. Antioxidants, 2020, 9: 1020. doi: 10.3390/antiox9101020

    [36]

    Muhoberac BB, Vidal R. Iron, Ferritin, Hereditary Ferritinopathy, and Neurodegeneration[J]. Front Neurosci, 2019, 13: 1195. doi: 10.3389/fnins.2019.01195

    [37]

    Wu Q, Wei C, Guo S, et al. Acute iron overload aggravates blood-brain barrier disruption and hemorrhagic transformation aftertransient focal ischemia in rats with hyperglycemia[J]. IBRO Neurosci Rep, 2022, 13: 87-95. doi: 10.1016/j.ibneur.2022.06.006

    [38]

    Jakaria M, Belaidi AA, Bush AI, et al. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease[J]. J Neurochem, 2021, 159(5): 804-825. doi: 10.1111/jnc.15519

    [39]

    Angelova DM, Brown DR. Microglia and the Aging Brain: Are Senescent Microglia the Key to Neurodegeneration?[J]. J Neurochem, 2019, 157(4): 676-688.

    [40]

    Yambire KF, Rostosky C, Watanabe T, et al. Impaired Lysosomal Acidification Triggers Iron Deficiency and Inflammation in Vivo[J]. Life, 2019, 8: e51031.

    [41]

    Wei XB, Jiang WQ, Zeng JH, et al. Exosome-Derived lncRNA NEAT1 Exacerbates Sepsis-Associated Encephalopathy byPromoting Ferroptosis Through Regulating miR-9-5p/TFRC and GOT1 Axis[J]. Mol Neurobiol, 2022, 59(3): 1954-1969. doi: 10.1007/s12035-022-02738-1

    [42]

    Wang J, Zhu Q, Wang Y, et al. Irisin protects against sepsis-associated encephalopathy by suppressing ferroptosis via activation of theNrf2/GPX4 signal axis[J]. Free Radic Biol Med, 2022, 187: 171-184. doi: 10.1016/j.freeradbiomed.2022.05.023

    [43]

    Chu J, Jiang Y, Zhou W, et al. Acetaminophen alleviates ferroptosis in mice with sepsis-associated encephalopathy via the GPX4 pathway[J]. Hum Exp Toxicol, 2022, 41: 9603271221133547.

    [44]

    Li YC, Liu Y, Wu P, et al. Inhibition of Ferroptosis Alleviates Early Brain Injury After Subarachnoid Hemorrhage In Vitro and In Vivo via Reduction of Lipid Peroxidation[J]. Cell Mol Neurobiol, 2021, 41(2): 263-278. doi: 10.1007/s10571-020-00850-1

    [45]

    Kenny E, Fidan E, Yang Q, et al. Ferroptos is contributes to neuronal death and functional outcome after traumatic brain injury[J]. Crit Care Med, 2019, 47(3): 410-418. doi: 10.1097/CCM.0000000000003555

    [46]

    Chu J, Jiang Y, Zhou W, et al. Acetaminophen alleviatesferroptosis in mice with sepsis-associatedencephalopathy via the GPX4pathway[J]. HumExpToxicol, 2022, 41: 960327122113357.

    [47]

    Jiang T, Cheng H, Su J, et al. Gastrodin protects against glutamate-induced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway[J]. Toxicol In Vitro, 2020, 62: 104715. doi: 10.1016/j.tiv.2019.104715

    [48]

    Xie Z, Xu M, Xie J, et al. Inhibition of Ferroptosis Attenuates Glutamate Excitotoxicity and Nuclear Autophagy in a CLP Septic Mouse Model[J]. Shock, 2022, 57(5): 694-702. doi: 10.1097/SHK.0000000000001893

    [49]

    Zhao S, Wu W, Liao J, et al. Molecular mechanisms underlying the renal protective effects of coenzyme Q10 in acute kidney injury[J]. Cell Mol Biol Lett, 2022, 27(1): 57. doi: 10.1186/s11658-022-00361-5

    [50]

    Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis[J]. Redox Biol, 2019, 23: 101107. doi: 10.1016/j.redox.2019.101107

    [51]

    Xie K, Zhang Y, Wang Y, et al. Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation[J]. Inflamm Res, 2020, 69(7): 697-710. doi: 10.1007/s00011-020-01347-9

    [52]

    Yu Y, Feng J, Lian N, et al. Hydrogen gas alleviates blood-brain barrier impairment and cognitive dysfunction of septic mice in an Nrf2-dependent pathway[J]. Int Immunopharmacol, 2020, 85: 106585. doi: 10.1016/j.intimp.2020.106585

    [53]

    Gou Z, Su X, Hu X, et al. Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway[J]. Brain Res Bull, 2020, 163: 40-48. doi: 10.1016/j.brainresbull.2020.07.011

    [54]

    黄庆洋, 纪东东, 田绣云, 等. 小檗碱通过激活Nrf2-HO-1/GPX4通路抑制小鼠海马神经元HT22细胞的铁死亡[J]. 南方医科大学学报, 2022, 42(6): 937-943. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJD202206013.htm

    [55]

    包钟元, 季晶. 铁死亡在颅脑外伤中的研究进展[J]. 南京医科大学学报(自然科学版), 2022, 42(2): 270-278. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK202202021.htm

    [56]

    Ye Z, Zhang F, Wang P, et al. Baicalein Relieves Brain Injury via Inhibiting Ferroptosis and Endoplasmic Reticulum Stress in a Rat Model of Cardiac Arrest[J]. Shock, 2023, 59(3): 434-441. doi: 10.1097/SHK.0000000000002058

    [57]

    沈馨, 余盈盈, 陈峻逸, 等. 靶向铁死亡防治重大疾病的转化医学研究[J]. 中国科学: 生命科学, 2022, 52(12): 1815-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK202212008.htm

    [58]

    Liu Y, Tan S, Wu Y, et al. The Emerging Role of Ferroptosis in Sepsis[J]. DNA Cell Biol, 2022, 41(4): 368-380. doi: 10.1089/dna.2021.1072

    [59]

    张桂洪, 唐旭东. 铁死亡与免疫细胞关系的研究进展[J]. 中国比较医学杂志, 2023, 33(3): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX202303012.htm

  • 加载中
计量
  • 文章访问数:  1096
  • PDF下载数:  472
  • 施引文献:  0
出版历程
收稿日期:  2023-04-24
刊出日期:  2023-08-10

目录