活性氧在敌草快中毒中的作用机制研究进展

白丽花, 陈阳, 黄思佳, 等. 活性氧在敌草快中毒中的作用机制研究进展[J]. 临床急诊杂志, 2022, 23(8): 603-608. doi: 10.13201/j.issn.1009-5918.2022.08.012
引用本文: 白丽花, 陈阳, 黄思佳, 等. 活性氧在敌草快中毒中的作用机制研究进展[J]. 临床急诊杂志, 2022, 23(8): 603-608. doi: 10.13201/j.issn.1009-5918.2022.08.012
BAI Lihua, CHEN Yang, HUANG Sijia, et al. The mechanism of reactive oxygen species and pharmacological therapy in diquat poisoning[J]. J Clin Emerg, 2022, 23(8): 603-608. doi: 10.13201/j.issn.1009-5918.2022.08.012
Citation: BAI Lihua, CHEN Yang, HUANG Sijia, et al. The mechanism of reactive oxygen species and pharmacological therapy in diquat poisoning[J]. J Clin Emerg, 2022, 23(8): 603-608. doi: 10.13201/j.issn.1009-5918.2022.08.012

活性氧在敌草快中毒中的作用机制研究进展

详细信息
    通讯作者: 董雪松, E-mail: dongxues@163.com

    Δ审校者

  • 中图分类号: R595.4

The mechanism of reactive oxygen species and pharmacological therapy in diquat poisoning

More Information
  • 敌草快(DQ)是一种非选择性速效除草剂,具有较强的毒性作用,人体和动物摄入后可以导致中毒的发生。DQ的毒性源于其通过氧化还原循环过程产生活性氧(ROS),并进一步引起氧化应激,最终导致细胞和组织损伤。临床上尚无DQ中毒的治疗指南,目前无特效解毒药物。本文主要介绍DQ中毒后,ROS使机体细胞损伤的作用机制及药理学靶点研究进展,为以后DQ中毒的研究提供基础。
  • 加载中
  • 图 1  DQ中毒后ROS来源

    图 2  DQ诱导的ROS对机体的影响

  • [1]

    Yue LN, Xiang P, Song FY, et al. Analysis Methodsof Common Herbicides in Biological Material and Research Progress[J]. Fa Yi Xue Za Zhi, 2021, 37(2): 248-255.

    [2]

    Glasauer A. Chandel NS. Ros[J]. Curr Biol, 2013, 23(3): R100-102. doi: 10.1016/j.cub.2012.12.011

    [3]

    急性敌草快中毒诊断与治疗专家共识组. 急性敌草快中毒诊断与治疗专家共识[J]. 中华急诊医学杂志, 2020, 29(10): 1282-1289. doi: 10.3760/cma.j.issn.1671-0282.2020.10.002

    [4]

    Badran A, Nasser SA, Mesmar J, et al. Reactive Oxygen Species: Modulators of Phenotypic Switch of Vascular Smooth Muscle Cells[J]. Int J Mol Sci, 2020, 21(22): 8764. doi: 10.3390/ijms21228764

    [5]

    Zhang J, Wang X, Vikash V, et al. ROS and ROS-Mediated Cellular Signaling[J]. Oxid Med Cell Longev, 2016, 2016: 4350965.

    [6]

    Brillo V, Chieregato L, Leanza L, et al. Mitochondrial Dynamics, ROS, and Cell Signaling: A Blended Overview[J]. Life(Basel), 2021, 11(4): 332.

    [7]

    Tauffenberger A, Magistretti PJ. Reactive Oxygen Species: Beyond Their Reactive Behavior[J]. Neurochem Res, 2021, 46(1): 77-87. doi: 10.1007/s11064-020-03208-7

    [8]

    Chen J, Su Y, Lin R, et al. Effects of Acute Diquat Poisoning on Liver Mitochondrial Apoptosis and Autophagy in Ducks[J]. Front Vet Sci, 2021, 8: 727766. doi: 10.3389/fvets.2021.727766

    [9]

    陈阳, 刘昊, 董雪松. 敌草快的中毒机制和治疗研究进展[J]. 临床急诊杂志, 2021, 22(7): 496-502. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202107014.htm

    [10]

    Choi SE, Park YS, Koh HC. NF-κB/p53-activated inflammatory response involves in diquat-induced mitochondrial dysfunction and apoptosis[J]. Environ Toxicol, 2018, 33(10): 1005-1018. doi: 10.1002/tox.22552

    [11]

    Xun W, Fu Q, Shi L, et al. Resveratrol protects intestinal integrity, alleviates intestinal inflammation and oxidative stress by modulating AhR/Nrf2 pathways in weaned piglets challenged with diquat[J]. Int Immunopharmacol, 2021, 99: 107989. doi: 10.1016/j.intimp.2021.107989

    [12]

    Azzam P, Francis M, Youssef T, et al. Crosstalk Between SMPDL3b and NADPH Oxidases Mediates Radiation-Induced Damage of Renal Podocytes[J]. Front Med(Lausanne), 2021, 8: 732528.

    [13]

    耿进红. 大蒲莲猪TLR9/NF-κB基因对IPEC-J2细胞氧化应激和炎症的影响[D]. 山东: 山东农业大学, 2021.

    [14]

    Guo J, He L, Li T, et al. Antioxidant and Anti-Inflammatory Effects of Different Zinc Sources on Diquat-Induced Oxidant Stress in a Piglet Model[J]. Biomed Res Int, 2020, 2020: 3464068.

    [15]

    Wang C, Cao S, Zhang Q, et al. Dietary Tributyrin Attenuates Intestinal Inflammation, Enhances Mitochondrial Function, and Induces Mitophagy in Piglets Challenged with Diquat[J]. J Agric Food Chem, 2019, 67(5): 1409-1417. doi: 10.1021/acs.jafc.8b06208

    [16]

    Chen W, Yuan H, Cao W, et al. Blocking interleukin-6 trans-signaling protects against renal fibrosis by suppressing STAT3 activation[J]. Theranostics, 2019, 9(14): 3980-3991. doi: 10.7150/thno.32352

    [17]

    Lu Y, Zhong W, Liu Y, et al. Anti-PD-L1 antibody alleviates pulmonary fibrosis by inducing autophagy via inhibition of the PI3K/Akt/mTOR pathway[J]. Int Immunopharmacol, 2022, 104: 108504. doi: 10.1016/j.intimp.2021.108504

    [18]

    He L, Zhang H, Zhou X. Weanling Offspring of Dams Maintained on Serine-Deficient Diet Are Vulnerable to Oxidative Stress[J]. Oxid Med Cell Longev, 2018, 2018: 8026496.

    [19]

    Bermúdez-Muñoz JM, Celaya AM, Hijazo-Pechero S, et al. G6PD overexpression protects from oxidative stress and age-related hearing loss[J]. Aging Cell, 2020, 19(12): e13275.

    [20]

    Chen Y, Zhang H, Ji S, et al. Resveratrol and its derivative pterostilbene attenuate oxidative stress-induced intestinal injury by improving mitochondrial redox homeostasis and function via SIRT1 signaling[J]. Free Radic Biol Med, 2021, 177: 1-14. doi: 10.1016/j.freeradbiomed.2021.10.011

    [21]

    Zhou X, He L, Zuo S, et al. Serine prevented high-fat diet-induced oxidative stress by activating AMPK and epigenetically modulating the expression of glutathione synthesis-related genes[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(2): 488-498. doi: 10.1016/j.bbadis.2017.11.009

    [22]

    Park A, Koh HC. NF-κB/mTOR-mediated autophagy can regulate diquat-induced apoptosis[J]. Arch Toxicol, 2019, 93(5): 1239-1253. doi: 10.1007/s00204-019-02424-7

    [23]

    Tang L, Zeng Z, Zhou Y, et al. Bacillus amyloliquefaciens SC06 Induced AKT-FOXO Signaling Pathway-Mediated Autophagy to Alleviate Oxidative Stress in IPEC-J2 Cells[J]. Antioxidants(Basel, Switzerland), 2021, 10(10): 1545.

    [24]

    Narendra D, Tanaka A, Suen DF, et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. J Cell Biol, 2008, 183(5): 795-803. doi: 10.1083/jcb.200809125

    [25]

    刘雪萍, 蒋文中, 杨志前, 等. 口服敌草快中毒主要靶器官的新认识[J]. 岭南急诊医学杂志, 2021, 26(2): 180-182. https://www.cnki.com.cn/Article/CJFDTOTAL-LNJZ202102024.htm

    [26]

    Li GH, Li YR, Jiao P, et al. Therapeutic Potential of Salviae Miltiorrhizae Radix et Rhizoma against Human Diseases Based on Activation of Nrf2-Mediated Antioxidant Defense System: Bioactive Constituents and Mechanism of Action[J]. Oxid Med Cell Longev, 2018, 2018: 7309073.

    [27]

    Acar A. In vivo toxicological assessment of diquat dibromide: cytotoxic, genotoxic, and biochemical approach[J]. Environ Sci Pollut Res Int, 2021, 28(34): 47550-47561. doi: 10.1007/s11356-021-13936-0

    [28]

    Jia P, Ji S, Zhang H, et al. Piceatannol Ameliorates Hepatic Oxidative Damage and Mitochondrial Dysfunction of Weaned Piglets Challenged with Diquat[J]. Animals(Basel), 2020, 10(7): 15.

    [29]

    Jia H, Zhang Y, Si X, et al. Quercetin Alleviates Oxidative Damage by Activating Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Porcine Enterocytes[J]. Nutrients, 2021, 13(2): 15.

    [30]

    Wang S, Bai M, Xu K, et al. Effects of Coated Cysteamine on Oxidative Stress and Inflammation in Weaned Pigs[J]. Animals(Basel), 2021, 11(8): 2217.

    [31]

    Mao X, Lv M, Yu B, et al. Correction to: The effect of dietary tryptophan levels on oxidative stress of liver induced by diquat in weaned piglets[J]. J Anim Sci Biotechnol, 2021, 12(1): 116. doi: 10.1186/s40104-021-00631-w

    [32]

    Jin Y, Zhai Z, Jia H, et al. Kaempferol attenuates diquat-induced oxidative damage and apoptosis in intestinal porcine epithelial cells[J]. Food Funct, 2021, 12(15): 6889-6899. doi: 10.1039/D1FO00402F

    [33]

    贾沛璐, 张昊, 陈亚楠, 等. 白皮杉醇对氧化应激断奶仔猪空肠抗氧化能力、黏膜形态和屏障功能的影响[J]. 畜牧兽医学报, 2021, 52(6): 1616-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSY202106016.htm

    [34]

    Wen C, Li F, Guo Q, et al. Protective effects of taurine against muscle damage induced by diquat in 35 days weaned piglets[J]. J Anim Sci Biotechnol, 2020, 11: 56. doi: 10.1186/s40104-020-00463-0

    [35]

    Li M, Yuan D, Liu Y, et al. Dietary Puerarin Supplementation Alleviates Oxidative Stress in the Small Intestines of Diquat-Challenged Piglets[J]. Animals(Basel), 2020, 10(4): 631.

    [36]

    Hao L, Cheng Y, Su W, et al. Pediococcus pentosaceus ZJUAF-4 relieves oxidative stress and restores the gut microbiota in diquat-induced intestinal injury[J]. Appl Microbiol Biotechnol, 2021, 105(4): 1657-1668. doi: 10.1007/s00253-021-11111-6

    [37]

    Zhang H, Liu Y, Fang X, et al. Vitamin D3 Protects Mice from Diquat-Induced Oxidative Stress through the NF-κB/Nrf2/HO-1 Signaling Pathway[J]. Oxid Med Cell Longev, 2021, 2021: 6776956.

    [38]

    付婧, 燕宪亮, 许铁. 乌司他丁通过抑制炎症反应及激活Nrf2/ARE通路提高感染性休克患者临床疗效的研究[J]. 临床急诊杂志, 2020, 21(2): 161-164. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202002014.htm

    [39]

    Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. doi: 10.1016/j.cell.2012.03.042

    [40]

    Hua H, Xu X, Tian W, et al. Glycine alleviated diquat-induced hepatic injury via inhibiting ferroptosis in weaned piglets[J]. Anim Biosci, 2022, 35(6): 938-947. doi: 10.5713/ab.21.0298

    [41]

    He P, Hua H, Tian W, et al. Holly(Ilex latifolia Thunb. )Polyphenols Extracts Alleviate Hepatic Damage by Regulating Ferroptosis Following Diquat Challenge in a Piglet Model[J]. Front Nutr, 2020, 7: 604328. doi: 10.3389/fnut.2020.604328

    [42]

    Qiao L, Dou X, Yan S, et al. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity[J]. Food Funct, 2020, 11(4): 3020-3031. doi: 10.1039/D0FO00132E

    [43]

    Liu L, Wu C, Chen D, et al. Selenium-Enriched Yeast Alleviates Oxidative Stress-Induced Intestinal Mucosa Disruption in Weaned Pigs[J]. Oxid Med Cell Longev, 2020, 2020: 5490743.

    [44]

    Doan N, Liu YH, Xiong X, et al. Organic selenium supplement partially alleviated diquat-induced oxidative insults and hepatic metabolic stress in nursery pigs[J]. Brit J Nutr, 2020, 124(1): 23-33. doi: 10.1017/S0007114520000689

    [45]

    Chen LL, Huang JQ, Xiao Y, et al. Knockout of Selenoprotein V Affects Regulation of Selenoprotein Expression by Dietary Selenium and Fat Intakes in Mice[J]. J Nutr, 2020, 150(3): 483-491. doi: 10.1093/jn/nxz287

    [46]

    Charlton A, Garzarella J, Jandeleit-Dahm K, et al. Oxidative Stress and Inflammation in Renal and Cardiovascular Complications of Diabetes[J]. Biology(Basel), 2020, 10(1): 18.

  • 加载中

(2)

计量
  • 文章访问数:  1321
  • PDF下载数:  764
  • 施引文献:  0
出版历程
收稿日期:  2022-05-27
刊出日期:  2022-08-10

目录