院外心脏骤停复苏后治疗的研究进展

祝鑫, 姜应波, 耿仕涛, 等. 院外心脏骤停复苏后治疗的研究进展[J]. 临床急诊杂志, 2023, 24(3): 166-172. doi: 10.13201/j.issn.1009-5918.2023.03.011
引用本文: 祝鑫, 姜应波, 耿仕涛, 等. 院外心脏骤停复苏后治疗的研究进展[J]. 临床急诊杂志, 2023, 24(3): 166-172. doi: 10.13201/j.issn.1009-5918.2023.03.011
ZHU Xin, JIANG Yingbo, GENG Shitao, et al. Research progress in treatment of out-of-hospital cardiac arrest after resuscitation[J]. J Clin Emerg, 2023, 24(3): 166-172. doi: 10.13201/j.issn.1009-5918.2023.03.011
Citation: ZHU Xin, JIANG Yingbo, GENG Shitao, et al. Research progress in treatment of out-of-hospital cardiac arrest after resuscitation[J]. J Clin Emerg, 2023, 24(3): 166-172. doi: 10.13201/j.issn.1009-5918.2023.03.011

院外心脏骤停复苏后治疗的研究进展

详细信息
    通讯作者: 徐牛,E-mail:E-mail:19400851@qq.com
  • 中图分类号: R459.7

Research progress in treatment of out-of-hospital cardiac arrest after resuscitation

More Information
  • 院外心脏骤停(OHCA)带来了巨大的全球死亡率和发病率, 及时的心肺复苏是提高生存率的最重要措施, 而复苏后的治疗影响着幸存者的生活质量与神经功能结果。国内外多个协会颁布了OHCA复苏后治疗的指南, 但在许多问题上还存在争议, 缺乏最佳临床标准。本文就复苏后治疗中的关键问题, 包括靶向温度管理(TTM)、目标血压和氧合以及侵入性管理措施等方面进行探讨, 旨在为临床实践与后续的研究提供参考。
  • 加载中
  • [1]

    Myat A, Song KJ, Rea T. Out-of-hospital cardiac arrest: current concepts[J]. Lancet, 2018, 391(10124): 970-979. doi: 10.1016/S0140-6736(18)30472-0

    [2]

    Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association[J]. Circulation, 2022, 145(8): e153-e639.

    [3]

    Thibodeau J, Werner K, Wallis LA, et al. Out-of-hospital cardiac arrest in Africa: a scoping review[J]. BMJ Open, 2022, 12(3): e055008. doi: 10.1136/bmjopen-2021-055008

    [4]

    武小娟, 孟舰, 刘红新, 等. 心脏骤停心肺复苏术中"生存链"实施现状及患者预后因素分析[J]. 临床急诊杂志, 2022, 23(3): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202203007.htm

    [5]

    Inoue A, Hifumi T, Sakamoto T, et al. Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest in adult patients[J]. J Am Heart Assoc, 2020, 9(7): e015291. doi: 10.1161/JAHA.119.015291

    [6]

    Dalessio L. Post-cardiac arrest syndrome[J]. AACN Adv Crit Care, 2020, 31(4): 383-393. doi: 10.4037/aacnacc2020535

    [7]

    Lazzarin T, Tonon CR, Martins D, et al. Post-cardiac arrest: mechanisms, management, and future perspectives[J]. J Clin Med, 2022, 12(1): 259. doi: 10.3390/jcm12010259

    [8]

    Cronberg T, Lilja G, Horn J, et al. Neurologic function and health-related quality of life in patients following targeted temperature management at 33℃ vs 36℃ after out-of-hospital cardiac arrest: a randomized clinical trial[J]. JAMA Neurol, 2015, 72(6): 634-641. doi: 10.1001/jamaneurol.2015.0169

    [9]

    Fernando SM, di Santo P, Sadeghirad B, et al. Targeted temperature management following out-of-hospital cardiac arrest: a systematic review and network meta-analysis of temperature targets[J]. Intensive Care Med, 2021, 47(10): 1078-1088. doi: 10.1007/s00134-021-06505-z

    [10]

    Taccone FS, Picetti E, Vincent JL. High quality targeted temperature management(TTM)after cardiac arrest[J]. Crit Care, 2020, 24(1): 6. doi: 10.1186/s13054-019-2721-1

    [11]

    Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33℃ versus 36℃ after cardiac arrest[J]. N Engl J Med, 2013, 369(23): 2197-2206. doi: 10.1056/NEJMoa1310519

    [12]

    Kleissner M, Sramko M, Kautzner J, et al. Mid-term clinical outcomes of out-of-hospital cardiac arrest patients treated with targeted temperature management at 34-36[J]. Heart Lung, 2019, 48(4): 273-277. doi: 10.1016/j.hrtlng.2018.11.007

    [13]

    Johnsson J, Wahlström J, Dankiewicz J, et al. Functional outcomes associated with varying levels of targeted temperature management after out-of-hospital cardiac arrest-An INTCAR2 registry analysis[J]. Resuscitation, 2020, 146: 229-236. doi: 10.1016/j.resuscitation.2019.10.020

    [14]

    Panchal AR, Bartos JA, Cabañas JG, et al. Part 3: adult basic and advanced life support: 2020 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care[J]. Circulation, 2020, 142(16_suppl_2): S366-S468.

    [15]

    Bray JE, Stub D, Bloom JE, et al. Changing target temperature from 33℃ to 36℃ in the ICU management of out-of-hospital cardiac arrest: a before and after study[J]. Resuscitation, 2017, 113: 39-43. doi: 10.1016/j.resuscitation.2017.01.016

    [16]

    Johnson NJ, Danielson KR, Counts CR, et al. Targeted temperature management at 33 versus 36 degrees: a retrospective cohort study[J]. Crit Care Med, 2020, 48(3): 362-369. doi: 10.1097/CCM.0000000000004159

    [17]

    Dankiewicz J, Cronberg T, Lilja G, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest[J]. N Engl J Med, 2021, 384(24): 2283-2294. doi: 10.1056/NEJMoa2100591

    [18]

    Le May M, Osborne C, Russo J, et al. Effect of moderate vs mild therapeutic hypothermia on mortality and neurologic outcomes in comatose survivors of out-of-hospital cardiac arrest: the CAPITAL CHILL randomized clinical trial[J]. JAMA, 2021, 326(15): 1494-1503. doi: 10.1001/jama.2021.15703

    [19]

    Kirkegaard H, Søreide E, de Haas I, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial[J]. JAMA, 2017, 318(4): 341-350. doi: 10.1001/jama.2017.8978

    [20]

    Evald L, Brønnick K, Duez CHV, et al. Prolonged targeted temperature management reduces memory retrieval deficits six months post-cardiac arrest: a randomised controlled trial[J]. Resuscitation, 2019, 134: 1-9. doi: 10.1016/j.resuscitation.2018.12.002

    [21]

    Azzopardi D, Strohm B, Marlow N, et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes[J]. N Engl J Med, 2014, 371(2): 140-149. doi: 10.1056/NEJMoa1315788

    [22]

    Sawyer KN, Humbert A, Leroux BG, et al. Relationship between duration of targeted temperature management, ischemic interval, and good functional outcome from out-of-hospital cardiac arrest[J]. Crit Care Med, 2020, 48(3): 370-377. doi: 10.1097/CCM.0000000000004160

    [23]

    Jeppesen AN, Hvas AM, Duez CHV, et al. Prolonged targeted temperature management compromises thrombin generation: a randomised clinical trial[J]. Resuscitation, 2017, 118: 126-132. doi: 10.1016/j.resuscitation.2017.06.004

    [24]

    Chen SY, Lachance BB, Gao L, et al. Targeted temperature management and early neuro-prognostication after cardiac arrest[J]. J Cereb Blood Flow Metab, 2021, 41(6): 1193-1209. doi: 10.1177/0271678X20970059

    [25]

    Stanger D, Kawano T, Malhi N, et al. Door-to-targeted temperature management initiation time and outcomes in out-of-hospital cardiac arrest: insights from the continuous chest compressions trial[J]. J Am Heart Assoc, 2019, 8(9): e012001. doi: 10.1161/JAHA.119.012001

    [26]

    Nordberg P, Taccone FS, Truhlar A, et al. Effect of trans-nasal evaporative intra-arrest cooling on functional neurologic outcome in out-of-hospital cardiac arrest: the PRINCESS randomized clinical trial[J]. JAMA, 2019, 321(17): 1677-1685. doi: 10.1001/jama.2019.4149

    [27]

    Simpson RFG, Dankiewicz J, Karamasis GV, et al. Speed of cooling after cardiac arrest in relation to the intervention effect: a sub-study from the TTM2-trial[J]. Crit Care, 2022, 26(1): 356. doi: 10.1186/s13054-022-04231-6

    [28]

    Zhu YB, Yao Y, Ren Y, et al. Targeted temperature management for cardiac arrest due to non-shockable rhythm: a systematic review and meta-analysis of randomized controlled trials[J]. Front Med(Lausanne), 2022, 9: 910560.

    [29]

    Lindsay PJ, Buell D, Scales DC. The efficacy and safety of pre-hospital cooling after out-of-hospital cardiac arrest: a systematic review and meta-analysis[J]. Crit Care, 2018, 22(1): 66. doi: 10.1186/s13054-018-1984-2

    [30]

    Grand J, Wiberg S, Kjaergaard J, et al. Increasing mean arterial pressure or cardiac output in comatose out-of-hospital cardiac arrest patients undergoing targeted temperature management: effects on cerebral tissue oxygenation and systemic hemodynamics[J]. Resuscitation, 2021, 168: 199-205. doi: 10.1016/j.resuscitation.2021.08.037

    [31]

    Grand J, Lilja G, Kjaergaard J, et al. Arterial blood pressure during targeted temperature management after out-of-hospital cardiac arrest and association with brain injury and long-term cognitive function[J]. Eur Heart J Acute Cardiovasc Care, 2020, 9(4_suppl): S122-S130. doi: 10.1177/2048872619860804

    [32]

    Laverriere EK, Polansky M, French B, et al. Association of duration of hypotension with survival after pediatric cardiac arrest[J]. Pediatr Crit Care Med, 2020, 21(2): 143-149. doi: 10.1097/PCC.0000000000002119

    [33]

    Bonnemain J, Rusca M, Ltaief Z, et al. Hyperoxia during extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest is associated with severe circulatory failure and increased mortality[J]. BMC Cardiovasc Disord, 2021, 21(1): 542. doi: 10.1186/s12872-021-02361-3

    [34]

    Nolan JP, Sandroni C, Böttiger BW, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care[J]. Intensive Care Med, 2021, 47(4): 369-421. doi: 10.1007/s00134-021-06368-4

    [35]

    Ameloot K, Meex I, Genbrugge C, et al. Hemodynamic targets during therapeutic hypothermia after cardiac arrest: a prospective observational study[J]. Resuscitation, 2015, 91: 56-62. doi: 10.1016/j.resuscitation.2015.03.016

    [36]

    Rikhraj KJK, Wood MD, Hoiland RL, et al. Determining optimal mean arterial pressure after cardiac arrest: a systematic review[J]. Neurocrit Care, 2021, 34(2): 621-634. doi: 10.1007/s12028-020-01027-w

    [37]

    Ameloot K, De Deyne C, Ferdinande B, et al. Mean arterial pressure of 65 mm Hg versus 85-100 mm Hg in comatose survivors after cardiac arrest: rationale and study design of the Neuroprotect post-cardiac arrest trial[J]. Am Heart J, 2017, 191: 91-98. doi: 10.1016/j.ahj.2017.06.010

    [38]

    Jakkula P, Pettilä V, Skrifvars MB, et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial[J]. Intensive Care Med, 2018, 44(12): 2091-2101. doi: 10.1007/s00134-018-5446-8

    [39]

    Ameloot K, Jakkula P, Hästbacka J, et al. Optimum blood pressure in patients with shock after acute myocardial infarction and cardiac arrest[J]. J Am Coll Cardiol, 2020, 76(7): 812-824. doi: 10.1016/j.jacc.2020.06.043

    [40]

    Wihersaari L, Ashton NJ, Reinikainen M, et al. Neurofilament light as an outcome predictor after cardiac arrest: a post hoc analysis of the COMACARE trial[J]. Intensive Care Med, 2021, 47(1): 39-48. doi: 10.1007/s00134-020-06218-9

    [41]

    Grand J, Hassager C, Schmidt H, et al. Hemodynamic evaluation by serial right heart catheterizations after cardiac arrest; protocol of a sub-study from the Blood Pressure and Oxygenation Targets after Out-of-Hospital Cardiac Arrest-trial(BOX)[J]. Resusc Plus, 2021, 8: 100188. doi: 10.1016/j.resplu.2021.100188

    [42]

    Kjaergaard J, Møller JE, Schmidt H, et al. Blood-pressure targets in comatose survivors of cardiac arrest[J]. N Engl J Med, 2022, 387(16): 1456-1466. doi: 10.1056/NEJMoa2208687

    [43]

    Ebner F, Ullén S, Åneman A, et al. Associations between partial pressure of oxygen and neurological outcome in out-of-hospital cardiac arrest patients: an explorative analysis of a randomized trial[J]. Crit Care, 2019, 23(1): 30. doi: 10.1186/s13054-019-2322-z

    [44]

    Robba C, Badenes R, Battaglini D, et al. Oxygen targets and 6-month outcome after out of hospital cardiac arrest: a pre-planned sub-analysis of the targeted hypothermia versus targeted normothermia after Out-of-Hospital Cardiac Arrest(TTM2) trial[J]. Crit Care, 2022, 26(1): 323. doi: 10.1186/s13054-022-04186-8

    [45]

    McKenzie N, Finn J, Dobb G, et al. Non-linear association between arterial oxygen tension and survival after out-of-hospital cardiac arrest: a multicentre observational study[J]. Resuscitation, 2021, 158: 130-138. doi: 10.1016/j.resuscitation.2020.11.021

    [46]

    Nishihara M, Hiasa KI, Enzan N, et al. Hyperoxemia is associated with poor neurological outcomes in patients with out-of-hospital cardiac arrest rescued by extracorporeal cardiopulmonary resuscitation: insight from the nationwide multicenter observational JAAM-OHCA(Japan association for acute medicine)registry[J]. J Emerg Med, 2022, 63(2): 221-231. doi: 10.1016/j.jemermed.2022.05.018

    [47]

    Ebner F, Riker RR, Haxhija Z, et al. The association of partial pressures of oxygen and carbon dioxide with neurological outcome after out-of-hospital cardiac arrest: an explorative International Cardiac Arrest Registry 2.0 study[J]. Scand J Trauma Resusc Emerg Med, 2020, 28(1): 67. doi: 10.1186/s13049-020-00760-7

    [48]

    Schmidt H, Kjaergaard J, Hassager C, et al. Oxygen targets in comatose survivors of cardiac arrest[J]. N Engl J Med, 2022, 387(16): 1467-1476. doi: 10.1056/NEJMoa2208686

    [49]

    Kelly EM, Pinto DS. Invasive management of out of hospital cardiac arrest[J]. Circ Cardiovasc Interv, 2019, 12(9): e006071. doi: 10.1161/CIRCINTERVENTIONS.118.006071

    [50]

    Kern KB, Lotun K, Patel N, et al. Outcomes of comatose cardiac arrest survivors with and without ST-segment elevation myocardial infarction: importance of coronary angiography[J]. JACC Cardiovasc Interv, 2015, 8(8): 1031-1040. doi: 10.1016/j.jcin.2015.02.021

    [51]

    Dumas F, Cariou A, Manzo-Silberman S, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT(Parisian Region Out of hospital Cardiac ArresT)registry[J]. Circ Cardiovasc Interv, 2010, 3(3): 200-207. doi: 10.1161/CIRCINTERVENTIONS.109.913665

    [52]

    Kumar A, Zhou L, Huded CP, et al. Prognostic implications and outcomes of cardiac arrest among contemporary patients with STEMI treated with PCI[J]. Resusc Plus, 2021, 7: 100149. doi: 10.1016/j.resplu.2021.100149

    [53]

    Authors/Task Force Members, McDonagh TA, Metra M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology(ESC). With the special contribution of the Heart Failure Association(HFA)of the ESC[J]. Eur J Heart Fail, 2022, 24(1): 4-131. doi: 10.1002/ejhf.2333

    [54]

    Kern KB, Radsel P, Jentzer JC, et al. Randomized pilot clinical trial of early coronary angiography versus No early coronary angiography after cardiac arrest without ST-segment elevation: the PEARL study[J]. Circulation, 2020, 142(21): 2002-2012. doi: 10.1161/CIRCULATIONAHA.120.049569

    [55]

    Desch S, Freund A, Akin I, et al. Angiography after out-of-hospital cardiac arrest without ST-segment elevation[J]. N Engl J Med, 2021, 385(27): 2544-2553. doi: 10.1056/NEJMoa2101909

    [56]

    Lemkes JS, Janssens GN, van der Hoeven NW, et al. Coronary angiography after cardiac arrest without ST segment elevation: one-year outcomes of the COACT randomized clinical trial[J]. JAMA Cardiol, 2020, 5(12): 1358-1365. doi: 10.1001/jamacardio.2020.3670

    [57]

    Lemkes JS, Spoormans EM, Demirkiran A, et al. The effect of immediate coronary angiography after cardiac arrest without ST-segment elevation on left ventricular function. A sub-study of the COACT randomised trial[J]. Resuscitation, 2021, 164: 93-100. doi: 10.1016/j.resuscitation.2021.04.020

    [58]

    Viana-Tejedor A, Andrea-Riba R, Scardino C, et al. Coronary angiography in patients without ST-segment elevation following out-of-hospital cardiac arrest. COUPE clinical trial[J]. Rev Esp Cardiol(Engl Ed), 2023, 76(2): 94-102. doi: 10.1016/j.recesp.2022.05.004

    [59]

    Song H, Kim HJ, Park KN, et al. Which out-of-hospital cardiac arrest patients without ST-segment elevation benefit from early coronary angiography? Results from the Korean hypothermia network prospective registry[J]. J Clin Med, 2021, 10(3): 439. doi: 10.3390/jcm10030439

    [60]

    Alves N, Mota M, Cunha M, et al. Impact of emergent coronary angiography after out-of-the-hospital cardiac arrest without ST-segment elevation-A systematic review and meta-analysis[J]. Int J Cardiol, 2022, 364: 1-8. doi: 10.1016/j.ijcard.2022.06.006

    [61]

    Freund A, van Royen N, Kern KB, et al. Early coronary angiography in patients after out-of-hospital cardiac arrest without ST-segment elevation: Meta-analysis of randomized controlled trials[J]. Catheter Cardiovasc Interv, 2022, 100(3): 330-337. doi: 10.1002/ccd.30355

    [62]

    Yang MC, Wu MJ, Xu XY, et al. Coronary angiography or not after cardiac arrest without ST segment elevation: a systematic review and meta-analysis[J]. Medicine, 2020, 99(41): e22197. doi: 10.1097/MD.0000000000022197

    [63]

    Yannopoulos D, Bartos J, Raveendran G, et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation(ARREST): a phase 2, single centre, open-label, randomised controlled trial[J]. Lancet, 2020, 396(10265): 1807-1816. doi: 10.1016/S0140-6736(20)32338-2

    [64]

    Abrams D, MacLaren G, Lorusso R, et al. Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications[J]. Intensive Care Med, 2022, 48(1): 1-15. doi: 10.1007/s00134-021-06514-y

    [65]

    Duan JW, Ma QB, Zhu CJ, et al. eCPR combined with therapeutic hypothermia could improve survival and neurologic outcomes for patients with cardiac arrest: a meta-analysis[J]. Front Cardiovasc Med, 2021, 8: 703567. doi: 10.3389/fcvm.2021.703567

    [66]

    Yannopoulos D, Bartos JA, Aufderheide TP, et al. The evolving role of the cardiac catheterization laboratory in the management of patients with out-of-hospital cardiac arrest: a scientific statement from the American heart association[J]. Circulation, 2019, 139(12): e530-e552.

    [67]

    Olson T, Anders M, Burgman C, et al. Extracorporeal cardiopulmonary resuscitation in adults and children: a review of literature, published guidelines and pediatric single-center program building experience[J]. Front Med(Lausanne), 2022, 9: 935424.

    [68]

    Kanchi M, Bangal K, Pvs P, et al. Extracorporeal membrane oxygenation(ECMO)for pulmonary and/or cardiopulmonary support-a brief review and our experience[J]. Indian J Surg, 2022: 1-10.

    [69]

    Bartos JA, Grunau B, Carlson C, et al. Improved survival with extracorporeal cardiopulmonary resuscitation despite progressive metabolic derangement associated with prolonged resuscitation[J]. Circulation, 2020, 141(11): 877-886. doi: 10.1161/CIRCULATIONAHA.119.042173

    [70]

    Haas NL, Coute RA, Hsu CH, et al. Descriptive analysis of extracorporeal cardiopulmonary resuscitation following out-of-hospital cardiac arrest-An ELSO registry study[J]. Resuscitation, 2017, 119: 56-62. doi: 10.1016/j.resuscitation.2017.08.003

    [71]

    Belohlavek J, Smalcova J, Rob D, et al. Effect of intra-arrest transport, extracorporeal cardiopulmonary resuscitation, and immediate invasive assessment and treatment on functional neurologic outcome in refractory out-of-hospital cardiac arrest: a randomized clinical trial[J]. JAMA, 2022, 327(8): 737-747. doi: 10.1001/jama.2022.1025

  • 加载中
计量
  • 文章访问数:  1132
  • PDF下载数:  473
  • 施引文献:  0
出版历程
收稿日期:  2022-12-11
刊出日期:  2023-03-10

目录