心肺复苏术后神经功能预后不良相关研究进展

付钰, 张江涛, 范晓甜, 等. 心肺复苏术后神经功能预后不良相关研究进展[J]. 临床急诊杂志, 2023, 24(3): 160-166. doi: 10.13201/j.issn.1009-5918.2023.03.010
引用本文: 付钰, 张江涛, 范晓甜, 等. 心肺复苏术后神经功能预后不良相关研究进展[J]. 临床急诊杂志, 2023, 24(3): 160-166. doi: 10.13201/j.issn.1009-5918.2023.03.010
FU Yu, ZHANG Jiangtao, FAN Xiaotian, et al. Research progress on poor prognosis of neurological function after cardiopulmonary resuscitation[J]. J Clin Emerg, 2023, 24(3): 160-166. doi: 10.13201/j.issn.1009-5918.2023.03.010
Citation: FU Yu, ZHANG Jiangtao, FAN Xiaotian, et al. Research progress on poor prognosis of neurological function after cardiopulmonary resuscitation[J]. J Clin Emerg, 2023, 24(3): 160-166. doi: 10.13201/j.issn.1009-5918.2023.03.010

心肺复苏术后神经功能预后不良相关研究进展

详细信息

Research progress on poor prognosis of neurological function after cardiopulmonary resuscitation

More Information
  • 心脏骤停是威胁人类健康的主要原因之一。心脏骤停后患者脑组织因缺血缺氧性损伤及缺血-再灌注损伤, 产生大量氧自由基等有害物质并引起一系列级联反应, 导致血脑屏障破坏、细胞水肿, 最终导致细胞凋亡、神经功能障碍。而自主循环恢复患者的预后和死亡常与脑损伤相关, 对心脏骤停后持续昏迷的患者进行频繁或持续的神经功能监测, 可减少对患者治疗的错误判断, 避免过度医疗或治疗不当, 目前临床上常采用神经系统查体、生物学标志物、神经电生理、神经影像学检查来评估神经系统功能。
  • 加载中
  • [1]

    Porzer M, Mrazkova E, Homza M, et al. Out-of-hospital cardiac arrest[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2017, 161(4): 348-353. doi: 10.5507/bp.2017.054

    [2]

    Ma QB, Feng LQ, Wang T, et al. 2020 expert consensus statement on neuro-protection after cardiac arrest in China[J]. Ann Transl Med, 2021, 9(2): 175. doi: 10.21037/atm-20-7853

    [3]

    Berdowski J, Berg RA, Tijssen JG, et al. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies[J]. Resuscitation, 2010, 81(11): 1479-1487. doi: 10.1016/j.resuscitation.2010.08.006

    [4]

    Schefold JC, Storm C, Krüger A, et al. The Glasgow coma score is a predictor of good outcome in cardiac arrest patients treated with therapeutic hypothermia[J]. Resuscitation, 2009, 80(6): 658-661. doi: 10.1016/j.resuscitation.2009.03.006

    [5]

    秦凤丽. 格拉斯哥昏迷评分对预测心脏骤停后综合征患者预后的临床分析[D]. 长春: 吉林大学, 2015.

    [6]

    Geocadin RG, Callaway CW, Fink EL, et al. Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American heart association[J]. Circulation, 2019, 140(9): e517-e542.

    [7]

    Nolan JP, Sandroni C, Böttiger BW, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care[J]. Intensive Care Med, 2021, 47(4): 369-421. doi: 10.1007/s00134-021-06368-4

    [8]

    Sekhon MS, Griesdale DE, Ainslie PN, et al. Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest[J]. Resuscitation, 2019, 141: 96-103. doi: 10.1016/j.resuscitation.2019.05.036

    [9]

    You Y, Park J, Min J, et al. Relationship between time related serum albumin concentration, optic nerve sheath diameter, cerebrospinal fluid pressure, and neurological prognosis in cardiac arrest survivors[J]. Resuscitation, 2018, 131: 42-47. doi: 10.1016/j.resuscitation.2018.08.003

    [10]

    Song H, Kang C, Park J, et al. Intracranial pressure patterns and neurological outcomes in out-of-hospital cardiac arrest survivors after targeted temperature management: a retrospective observational study[J]. J Clin Med, 2021, 10(23): 5697. doi: 10.3390/jcm10235697

    [11]

    Pansell J, Hack R, Rudberg P, et al. Can quantitative pupillometry be used to screen for elevated intracranial pressure? A retrospective cohort study[J]. Neurocrit Care, 2022, 37(2): 531-537. doi: 10.1007/s12028-022-01518-y

    [12]

    Pellathy TP, Pinsky MR, Hravnak M. Intensive care unit scoring systems[J]. Crit Care Nurse, 2021, 41(4): 54-64. doi: 10.4037/ccn2021613

    [13]

    Kim SI, Kim YJ, Lee YJ, et al. APACHE Ⅱ score immediately after cardiac arrest as a predictor of good neurological outcome in out-of-hospital cardiac arrest patients receiving targeted temperature management[J]. Acute Crit Care, 2018, 33(2): 83-88. doi: 10.4266/acc.2017.00514

    [14]

    Choi JY, Jang JH, Lim YS, et al. Performance on the APACHE Ⅱ, saps ii, sofa and the ohca score of post-cardiac arrest patients treated with therapeutic hypothermia[J]. PLoS One, 2018, 13(5): e0196197. doi: 10.1371/journal.pone.0196197

    [15]

    Yoon JC, Kim YJ, Lee YJ, et al. Serial evaluation of SOFA and APACHE Ⅱ scores to predict neurologic outcomes of out-of-hospital cardiac arrest survivors with targeted temperature management[J]. PLoS One, 2018, 13(4): e0195628. doi: 10.1371/journal.pone.0195628

    [16]

    Senaratne DS, Veenith T. Age influences the predictive value of Acute Physiology and Chronic Health Evaluation Ⅱ and Intensive Care National Audit and Research Centre scoring models in patients admitted to Intensive Care Units after in-hospital cardiac arrest[J]. Indian J Crit Care Med, 2015, 19(3): 155-158. doi: 10.4103/0972-5229.152758

    [17]

    Maciel CB, Barden MM, Youn TS, et al. Neuroprognostication practices in postcardiac arrest patients: an international survey of critical care providers[J]. Crit Care Med, 2020, 48(2): e107-e114. doi: 10.1097/CCM.0000000000004107

    [18]

    Bouwes A, Binnekade JM, Kuiper MA, et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study[J]. Ann Neurol, 2012, 71(2): 206-212. doi: 10.1002/ana.22632

    [19]

    Dragancea I, Horn J, Kuiper M, et al. Neurological prognostication after cardiac arrest and targeted temperature management 33℃ versus 36℃: results from a randomised controlled clinical trial[J]. Resuscitation, 2015, 93: 164-170. doi: 10.1016/j.resuscitation.2015.04.013

    [20]

    Sandroni C, D'Arrigo S, Cacciola S, et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review[J]. Intensive Care Med, 2020, 46(10): 1803-1851. doi: 10.1007/s00134-020-06198-w

    [21]

    Wang CH, Wu CY, Liu CCY, et al. Neuroprognostic accuracy of quantitative versus standard pupillary light reflex for adult postcardiac arrest patients: a systematic review and meta-analysis[J]. Crit Care Med, 2021, 49(10): 1790-1799. doi: 10.1097/CCM.0000000000005045

    [22]

    Oddo M, Sandroni C, Citerio G, et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter double-blinded study[J]. Intensive Care Med, 2018, 44(12): 2102-2111.

    [23]

    Riker RR, Sawyer ME, Fischman VG, et al. Neurological pupil index and pupillary light reflex by pupillometry predict outcome early after cardiac arrest[J]. Neurocritical Care, 2020, 32(1): 152-161. doi: 10.1007/s12028-019-00717-4

    [24]

    Kim JG, Shin H, Lim TH, et al. Efficacy of quantitative pupillary light reflex for predicting neurological outcomes in patients treated with targeted temperature management after cardiac arrest: a systematic review and meta-analysis[J]. Medicina(Kaunas), 2022, 58(6): 804.

    [25]

    Ruknuddeen MI, Ramadoss R, Rajajee V, et al. Early clinical prediction of neurological outcome following out of hospital cardiac arrest managed with therapeutic hypothermia[J]. Indian J Crit Care Med, 2015, 19(6): 304-310. doi: 10.4103/0972-5229.158256

    [26]

    Lybeck A, Friberg H, Aneman A, et al. Prognostic significance of clinical seizures after cardiac arrest and target temperature management[J]. Resuscitation, 2017, 114: 146-151. doi: 10.1016/j.resuscitation.2017.01.017

    [27]

    Lascarrou JB, Miailhe AF, le Gouge A, et al. NSE as a predictor of death or poor neurological outcome after non-shockable cardiac arrest due to any cause: ancillary study of HYPERION trial data[J]. Resuscitation, 2021, 158: 193-200. doi: 10.1016/j.resuscitation.2020.11.035

    [28]

    中华医学会神经病学分会神经重症协作组. 心肺复苏后昏迷评估中国专家共识[J]. 中华神经科杂志, 2015, 48(11): 965-968. doi: 10.3760/cma.j.issn.1006-7876.2015.11.006

    [29]

    Müller J, Bissmann B, Becker C, et al. Neuron-specific enolase(NSE)predicts long-term mortality in adult patients after cardiac arrest: results from a prospective trial[J]. Medicines(Basel), 2021, 8(11): 72.

    [30]

    Roger C, Palmier L, Louart B, et al. Neuron specific enolase and Glasgow motor score remain useful tools for assessing neurological prognosis after out-of-hospital cardiac arrest treated with therapeutic hypothermia[J]. Anaesth Crit Care Pain Med, 2015, 34(4): 231-237. doi: 10.1016/j.accpm.2015.05.004

    [31]

    Sharma K, John M, Zhang S, et al. Serum neuron-specific enolase thresholds for predicting postcardiac arrest outcome: a systematic review and meta-analysis[J]. Neurology, 2022, 98(1): e62-e72. doi: 10.1212/WNL.0000000000012967

    [32]

    王才木, 陈启江, 崔巍, 等. 血清S100β蛋白、神经元特异性烯醇化酶和球静脉氧饱和度在老年心肺脑复苏患者亚低温治疗中变化及其对预后的影响[J]. 中国老年学杂志, 2018, 38(10): 2325-2327. doi: 10.3969/j.issn.1005-9202.2018.10.009

    [33]

    Lee D, Cho Y, Ko Y, et al. Neuron-specific enolase level as a predictor of neurological outcome in near-hanging patients: a retrospective multicenter study[J]. PLoS One, 2021, 16(2): e0246898. doi: 10.1371/journal.pone.0246898

    [34]

    Stammet P, Dankiewicz J, Nielsen N, et al. Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 ℃ and 36 ℃[J]. Crit Care, 2017, 21(1): 153. doi: 10.1186/s13054-017-1729-7

    [35]

    Mörtberg E, Zetterberg H, Nordmark J, et al. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment[J]. Resuscitation, 2011, 82(1): 26-31. doi: 10.1016/j.resuscitation.2010.10.011

    [36]

    心肺复苏后昏迷患者早期神经功能预后评估专家共识组. 心肺复苏后昏迷患者早期神经功能预后评估专家共识[J]. 中华急诊医学杂志, 2019, 28(2): 156-162.

    [37]

    Hasslacher J, Rass V, Beer R, et al. Serum tau as a predictor for neurological outcome after cardiopulmonary resuscitation[J]. Resuscitation, 2020, 148: 207-214. doi: 10.1016/j.resuscitation.2020.01.022

    [38]

    You Y, Kang C, Jeong W, et al. The early prognostic value and optimal time of measuring serum and cerebrospinal fluid tau protein for neurologic outcomes in postcardiac arrest patients treated with targeted temperature management[J]. Ther Hypothermia Temp Manag, 2022, 12(4): 191-199. doi: 10.1089/ther.2021.0030

    [39]

    Yuan A, Sershen H, Veeranna, et al. Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo[J]. Mol Psychiatry, 2015, 20(8): 986-994. doi: 10.1038/mp.2015.45

    [40]

    Disanto G, Prosperetti C, Gobbi C, et al. Serum neurofilament light chain as a prognostic marker in postanoxic encephalopathy[J]. Epilepsy Behav, 2019, 101(Pt B): 106432.

    [41]

    Moseby-Knappe M, Mattsson N, Nielsen N, et al. Serum neurofilament light chain for prognosis of outcome after cardiac arrest[J]. JAMA Neurol, 2019, 76(1): 64-71. doi: 10.1001/jamaneurol.2018.3223

    [42]

    Bronder J, Cho SM, Geocadin RG, et al. Revisiting EEG as part of the multidisciplinary approach to post-cardiac arrest care and prognostication: a review[J]. Resusc Plus, 2022, 9: 100189. doi: 10.1016/j.resplu.2021.100189

    [43]

    Eertmans W, Genbrugge C, Haesevoets G, et al. Recorded time periods of bispectral index values equal to zero predict neurological outcome after out-of-hospital cardiac arrest[J]. Crit Care, 2017, 21(1): 221. doi: 10.1186/s13054-017-1806-y

    [44]

    Eertmans W, Genbrugge C, Haesen J, et al. The prognostic value of simplified EEG in out-of-hospital cardiac arrest patients[J]. Neurocrit Care, 2019, 30(1): 139-148. doi: 10.1007/s12028-018-0587-8

    [45]

    Ruijter BJ, van Putten M, van den Bergh WM, et al. Propofol does not affect the reliability of early EEG for outcome prediction of comatose patients after cardiac arrest[J]. Clin Neurophysiol, 2019, 130(8): 1263-1270. doi: 10.1016/j.clinph.2019.04.707

    [46]

    Benghanem S, Nguyen LS, Gavaret M, et al. SSEP N20 and P25 amplitudes predict poor and good neurologic outcomes after cardiac arrest[J]. Ann Intensive Care, 2022, 12(1): 25. doi: 10.1186/s13613-022-00999-6

    [47]

    Lachance B, Wang ZR, Badjatia N, et al. Somatosensory evoked potentials and neuroprognostication after cardiac arrest[J]. Neurocrit Care, 2020, 32(3): 847-857. doi: 10.1007/s12028-019-00903-4

    [48]

    Scarpino M, Lolli F, Lanzo G, et al. SSEP amplitude accurately predicts both good and poor neurological outcome early after cardiac arrest; a post-hoc analysis of the ProNeCA multicentre study[J]. Resuscitation, 2021, 163: 162-171. doi: 10.1016/j.resuscitation.2021.03.028

    [49]

    Segura T, Calleja S, Irimia P, et al. Recommendations for the use of transcranial Doppler ultrasonography to determine the existence of cerebral circulatory arrest as diagnostic support for brain death[J]. Rev Neurosci, 2009, 20(3-4): 251-259.

    [50]

    Choi MH, Lee SE, Choi JY, et al. Prognostic effects of vasomotor reactivity during targeted temperature management in post-cardiac arrest patients: a retrospective observational study[J]. J Clin Med, 2021, 10(15): 3386. doi: 10.3390/jcm10153386

    [51]

    Rafi S, Tadie JM, Gacouin A, et al. Doppler sonography of cerebral blood flow for early prognostication after out-of-hospital cardiac arrest: DOTAC study[J]. Resuscitation, 2019, 141: 188-194. doi: 10.1016/j.resuscitation.2019.05.024

    [52]

    Wang GN, Chen XF, Lv JR, et al. The prognostic value of gray-white matter ratio on brain computed tomography in adult comatose cardiac arrest survivors[J]. J Chin Med Assoc, 2018, 81(7): 599-604. doi: 10.1016/j.jcma.2018.03.003

    [53]

    Soto CL, Dragoi L, Heyn CC, et al. Imaging for neuroprognostication after cardiac arrest: systematic review and meta-analysis[J]. Neurocrit Care, 2020, 32(1): 206-216. doi: 10.1007/s12028-019-00842-0

    [54]

    Wang WJ, Cui J, Lv GW, et al. Prognostic values of the gray-to-white matter ratio on brain computed tomography images for neurological outcomes after cardiac arrest: a meta-analysis[J]. Biomed Res Int, 2020, 2020: 7949516.

    [55]

    Scarpino M, Lanzo G, Lolli F, et al. Neurophysiological and neuroradiological multimodal approach for early poor outcome prediction after cardiac arrest[J]. Resuscitation, 2018, 129: 114-120. doi: 10.1016/j.resuscitation.2018.04.016

    [56]

    黄云苑, 叶浩翊, 刘志锋, 等. 头颅CT纹理特征评价心搏骤停后患者复苏后脑损伤研究[J]. 临床急诊杂志, 2022, 23(11): 743-747. doi: 10.13201/j.issn.1009-5918.2022.11.001

    [57]

    吴远斌, 李双磊, 吴扬, 等. 心脏骤停患者心肺复苏后神经系统的评估和监测[J]. 中国体外循环杂志, 2019, 17(1): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TWXH201901014.htm

    [58]

    Velly L, Perlbarg V, Boulier T, et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological outcomes in patients after cardiac arrest: a multicentre, international, prospective, observational, cohort study[J]. Lancet Neurol, 2018, 17(4): 317-326. doi: 10.1016/S1474-4422(18)30027-9

    [59]

    Wei RL, Wang CN, He FP, et al. Prediction of poor outcome after hypoxic-ischemic brain injury by diffusion-weighted imaging: a systematic review and meta-analysis[J]. PLoS One, 2019, 14(12): e0226295. doi: 10.1371/journal.pone.0226295

    [60]

    Vanden Berghe S, Cappelle S, De Keyzer F, et al. Qualitative and quantitative analysis of diffusion-weighted brain MR imaging in comatose survivors after cardiac arrest[J]. Neuroradiology, 2020, 62(11): 1361-1369. doi: 10.1007/s00234-020-02460-6

    [61]

    Chelly J, Deye N, Guichard JP, et al. The optic nerve sheath diameter as a useful tool for early prediction of outcome after cardiac arrest: a prospective pilot study[J]. Resuscitation, 2016, 103: 7-13. doi: 10.1016/j.resuscitation.2016.03.006

    [62]

    Kim JG, Kim W, Shin H, et al. Optic nerve sheath diameter for predicting outcomes in post-cardiac arrest syndrome: an updated systematic review and meta-analysis[J]. J Pers Med, 2022, 12(3): 500. doi: 10.3390/jpm12030500

  • 加载中
计量
  • 文章访问数:  1203
  • PDF下载数:  516
  • 施引文献:  0
出版历程
收稿日期:  2022-10-16
刊出日期:  2023-03-10

目录