抑制CD18减轻脓毒症小鼠肠损伤的研究

白镓玮, 马承泰, 严颜, 等. 抑制CD18减轻脓毒症小鼠肠损伤的研究[J]. 临床急诊杂志, 2023, 24(3): 143-148. doi: 10.13201/j.issn.1009-5918.2023.03.007
引用本文: 白镓玮, 马承泰, 严颜, 等. 抑制CD18减轻脓毒症小鼠肠损伤的研究[J]. 临床急诊杂志, 2023, 24(3): 143-148. doi: 10.13201/j.issn.1009-5918.2023.03.007
BAI Jiawei, MA Chengtai, YAN Yan, et al. Study on inhibition of CD18 to alleviate intestinal injury in sepsis mice[J]. J Clin Emerg, 2023, 24(3): 143-148. doi: 10.13201/j.issn.1009-5918.2023.03.007
Citation: BAI Jiawei, MA Chengtai, YAN Yan, et al. Study on inhibition of CD18 to alleviate intestinal injury in sepsis mice[J]. J Clin Emerg, 2023, 24(3): 143-148. doi: 10.13201/j.issn.1009-5918.2023.03.007

抑制CD18减轻脓毒症小鼠肠损伤的研究

  • 基金项目:
    国家自然科学基金青年项目(No:82202409);湖北省自然科学基金项目(No:2022CFA089)
详细信息

Study on inhibition of CD18 to alleviate intestinal injury in sepsis mice

More Information
  • 目的 研究CD18在脓毒症肠损伤中的作用及机制。方法 将36只小鼠随机分为对照组、脓毒症组、抗CD18组, 腹腔注射LPS建立脓毒症小鼠模型; 抗CD18组先尾静脉注射CD18抗体, 30 min后腹腔注射LPS; 造模24 h后检测血清中β2整合素、D-乳酸、肝素结合蛋白(HBP)、肿瘤坏死因子-α(TNF-α)水平; 检测小肠组织中炎症因子(IL-6、IL-10)、紧密连接蛋白(ZO-1、Claudin-1)、Rho信号通路蛋白(ROCK1、mDia1)的表达水平及RhoA活性; 采用苏木精-伊红染色评估小肠病理损伤, 透射电镜观察小肠组织超微结构改变。结果 ① CD18抗体提高了脓毒症小鼠24 h存活率。②CD18抗体减轻了脓毒症小鼠小肠损伤(小肠病理损伤减轻、上皮间紧密连接破坏减轻、紧密连接蛋白表达增多), 改善了肠道通透性(D-乳酸水平下降)。③CD18抗体抑制了Rho信号通路(RhoA活性下降、ROCK1和mDia1表达减少)。结论 抑制CD18可以减轻脓毒症肠损伤, 改善肠道通透性; CD18可能是通过Rho信号通路参与了脓毒症的肠损伤。
  • 加载中
  • 图 1  各组小鼠24 h存活率

    图 2  光镜下观察小鼠肠组织病理学改变

    图 3  各组小鼠血清中D-乳酸、HBP、β2整合素的比较

    图 4  各组小鼠炎性因子TNF-α、IL-6、IL-10的比较

    图 5  透射电镜下观察各组小鼠小肠上皮细胞间紧密连接改变(醋酸铀染色×15 000)

    图 6  各组小鼠小肠组织ZO-1、Claudin-1的蛋白表达

    图 7  各组小鼠小肠组织中ROCK1、mDia1的蛋白表达

  • [1]

    黄昆鹏, 张进祥. 脓毒症的定义、诊断与早期干预——不可分割的三要素[J]. 临床急诊杂志, 2021, 22(3): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202103016.htm

    [2]

    Chen P, Billiar T. Gut microbiota and multiple organ dysfunction syndrome(MODS)[J]. Adv Exp Med Biol, 2020, 1238: 195-202.

    [3]

    Bednarczyk M, Stege H, Grabbe S, et al. β2 integrins-multi-functional leukocyte receptors in health and disease[J]. Int J Mol Sci, 2020, 21(4): 1402. doi: 10.3390/ijms21041402

    [4]

    刘杨, 马少林, 王学斌, 等. 整合素介导的肝素结合蛋白在肺损伤模型中的作用[J]. 中华急诊医学杂志, 2018, 27(7): 764-768. doi: 10.3760/cma.j.issn.1671-0282.2018.07.011

    [5]

    Liu Y, Ma SL, Wang XB, et al. The role of β2 integrin associated heparin-binding protein release in ARDS[J]. Life Sci, 2018, 203: 92-98. doi: 10.1016/j.lfs.2018.04.029

    [6]

    Wang BM, Lim JH, Kajikawa T, et al. Macrophage β2-integrins regulate IL-22 by ILC3 s and protect from lethal Citrobacter rodentium-induced colitis[J]. Cell Rep, 2019, 26(6): 1614-1626. e5. doi: 10.1016/j.celrep.2019.01.054

    [7]

    雷泓, 顾莹, 陈军仿, 等. Stattic对脂多糖诱导的肠道屏障功能障碍小鼠小肠组织基质金属蛋白酶-9表达的影响[J]. 中华实用诊断与治疗杂志, 2021, 35(10): 997-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD202110008.htm

    [8]

    Longhitano Y, Zanza C, Thangathurai D, et al. Gut alterations in septic patients: a biochemical literature review[J]. Rev Recent Clin Trials, 2020, 15(4): 289-297. doi: 10.2174/18761038MTA5BMDIr2

    [9]

    Schoultz I, Keita ÅV. The intestinal barrier and current techniques for the assessment of gut permeability[J]. Cells, 2020, 9(8): 1909. doi: 10.3390/cells9081909

    [10]

    Usuda H, Okamoto T, Wada K. Leaky gut: effect of dietary fiber and fats on microbiome and intestinal barrier[J]. Int J Mol Sci, 2021, 22(14): 7613.

    [11]

    He CM, Deng J, Hu X, et al. Vitamin A inhibits the action of LPS on the intestinal epithelial barrier function and tight junction proteins[J]. Food Funct, 2019, 10(2): 1235-1242. doi: 10.1039/C8FO01123K

    [12]

    Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, et al. Negative effects of a high-fat diet on intestinal permeability: a review[J]. Adv Nutr, 2020, 11(1): 77-91. doi: 10.1093/advances/nmz061

    [13]

    Zhang Q, Gao X, Wu JX, et al. The correlation between endotoxin, D-lactate, and diamine oxidase with endoscopic activity in inflammatory bowel disease[J]. Dis Markers, 2022, 2022: 9171436. http://doc.paperpass.com/foreign/rgPrep2020388444266.html

    [14]

    Zhang SF, Zhou QN, Li YC, et al. MitoQ modulates lipopolysaccharide-induced intestinal barrier dysfunction via regulating Nrf2 signaling[J]. Mediators Inflamm, 2020, 2020: 3276148.

    [15]

    李荔, 冯贵龙, 牛争平. 肝素结合蛋白分子特性及其与感染性疾病关系研究进展[J]. 中华实用诊断与治疗杂志, 2022, 36(4): 418-421. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZD202204023.htm

    [16]

    Wu YL, Yo CH, Hsu WT, et al. Accuracy of heparin-binding protein in diagnosing sepsis: a systematic review and meta-analysis[J]. Crit Care Med, 2021, 49(1): e80-e90.

    [17]

    Liu ZX, Chen MM, Sun YN, et al. Transforming growth factor-β receptor type 2 is required for heparin-binding protein-induced acute lung injury and vascular leakage for transforming growth factor-β/Smad/Rho signaling pathway activation[J]. FASEB J, 2022, 36(11): e22580.

    [18]

    Pajenda S, Figurek A, Wagner L, et al. Heparin-binding protein as a novel biomarker for sepsis-related acute kidney injury[J]. PeerJ, 2020, 8: e10122.

    [19]

    Sun JK, Shen X, Sun XP, et al. Heparin-binding protein as a biomarker of gastrointestinal dysfunction in critically ill patients: a retrospective cross-sectional study in China[J]. BMJ Open, 2020, 10(7): e036396.

    [20]

    郭娜, 宁海慧, 邢博民, 等. Rho/ROCK信号通路在脓毒症相关脏器损伤中的作用及机制研究进展[J]. 临床急诊杂志, 2021, 22(7): 503-507. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202107015.htm

    [21]

    Ryu H, Lee HN, Ju J, et al. Combinatorial effects of RhoA and Cdc42 on the actin cytoskeleton revealed by photoswitchable GEFs[J]. Sens Actuat B Chem, 2022, 369: 132316.

    [22]

    Jin Y, Blikslager AT. The regulation of intestinal mucosal barrier by myosin light chain kinase/rho kinases[J]. Int J Mol Sci, 2020, 21(10): 3550.

    [23]

    Hahmeyer MLDS, da Silva-Santos JE. Rho-proteins and downstream pathways as potential targets in Sepsis and septic shock: what have we learned from basic research[J]. Cells, 2021, 10(8): 1844.

    [24]

    Li ZL, Gao M, Yang BC, et al. Naringin attenuates MLC phosphorylation and NF-κB activation to protect sepsis-induced intestinal injury via RhoA/ROCK pathway[J]. Biomed Pharmacother, 2018, 103: 50-58.

    [25]

    Yang T, Wang L, Sun RQ, et al. Hydrogen-rich medium ameliorates lipopolysaccharide-induced barrier dysfunction via rhoa-mdia1 signaling in caco-2 cells[J]. Shock, 2016, 45(2): 228-237.

  • 加载中

(7)

计量
  • 文章访问数:  1220
  • PDF下载数:  296
  • 施引文献:  0
出版历程
收稿日期:  2022-12-25
刊出日期:  2023-03-10

目录