Hippo-YAP信号通路通过Beclin1调控自噬参与血管平滑肌细胞表型转换的机制研究

刘超利, 李桑柔, 岳秀青, 等. Hippo-YAP信号通路通过Beclin1调控自噬参与血管平滑肌细胞表型转换的机制研究[J]. 临床急诊杂志, 2022, 23(12): 870-877. doi: 10.13201/j.issn.1009-5918.2022.12.013
引用本文: 刘超利, 李桑柔, 岳秀青, 等. Hippo-YAP信号通路通过Beclin1调控自噬参与血管平滑肌细胞表型转换的机制研究[J]. 临床急诊杂志, 2022, 23(12): 870-877. doi: 10.13201/j.issn.1009-5918.2022.12.013
LIU Chaoli, LI Sangrou, YUE Xiuqing, et al. Study on the mechanism of Hippo-YAP signaling pathway regulate autophagy by Beclin1 in phenotypic transition of vascular smooth muscle cells[J]. J Clin Emerg, 2022, 23(12): 870-877. doi: 10.13201/j.issn.1009-5918.2022.12.013
Citation: LIU Chaoli, LI Sangrou, YUE Xiuqing, et al. Study on the mechanism of Hippo-YAP signaling pathway regulate autophagy by Beclin1 in phenotypic transition of vascular smooth muscle cells[J]. J Clin Emerg, 2022, 23(12): 870-877. doi: 10.13201/j.issn.1009-5918.2022.12.013

Hippo-YAP信号通路通过Beclin1调控自噬参与血管平滑肌细胞表型转换的机制研究

  • 基金项目:
    四川省科技厅重点研发项目(No:2022YFS0275);西南医科大学附属医院博士科研启动基金(No: 19085)
详细信息

Study on the mechanism of Hippo-YAP signaling pathway regulate autophagy by Beclin1 in phenotypic transition of vascular smooth muscle cells

More Information
  • 目的 探索Hippo-YAP信号通路与自噬在血管平滑肌细胞表型转换中的作用关系及其机制。方法 ① 培养小鼠血管平滑肌细胞(VSMCs),选取第4~8代用于实验,使用血管紧张素Ⅱ(AngⅡ,1×10-7mol/L)处理24 h构建VSMCs表型转换模型,对照组细胞以同浓度的二甲基亚砜(DOSO)处理。②使用Western Blot、qRT-PCR技术在蛋白质及mRNA水平对YAP,VSMCs表型标志物OPN、α-SMA,以及自噬相关标志物LC3、P62、Beclin1进行检测。③分别构建YAP与Beclin1的小干扰RNA(siRNA)对其进行敲减,构建YAP的过表达质粒(pcDNA-YAP)对其进行过表达,使用WB与qRT-PCR验证各基因的表达变化。结果 ① 与对照组相比,AngⅡ处理后VSMCs收缩型标志物α-SMA表达下调、合成型标志物OPN表达上调,YAP及自噬相关标志物LC3Ⅱ、Beclin1表达上调、P62表达下调,在蛋白质及mRNA水平均差异有统计学意义。②与对照组相比,YAP siRNA转染后,VSMCs中YAP在蛋白质与mRNA水平出现明显下调;过表达YAP后,YAP的表达水平出现明显上调。③与单纯AngⅡ刺激组相比,在AngⅡ联合YAP siRNA组中,表型转换的发生及自噬相关标志物的上调明显受到抑制;而过表达YAP组中,表型转换的发生及自噬相关标志物的上调得到进一步增强。④与单纯AngⅡ刺激组相比,AngⅡ联合Beclin1 siRNA组中,表型转换的发生及自噬相关标志物的上调均受到抑制,但两组中YAP的表达变化差异无统计学意义。结论 在VSMCs发生表型转换过程中,自噬相关基因及YAP的表达均明显上调,且YAP可能通过增加Beclin1的表达促进自噬,从而参与表型转换的发生。
  • 加载中
  • 图 1  AngⅡ对VSMCs标志物的mRNA及蛋白质表达水平的影响

    图 2  AngⅡ对VSMCs中YAP及自噬相关标志物的mRNA及蛋白质表达水平影响

    图 3  过表达YAP对AngⅡ诱导的VSMCs表型转换及自噬的影响

    图 4  沉默YAP对AngⅡ诱导的VSMCs表型转换及自噬的影响

    图 5  沉默Beclin1对VSMCs表型转换及YAP的影响

    表 1  引物序列及产物长度

    引物名称 引物序列 产物长度
    YAP F:5′-CAAATACAGCTGCAGCAGTTAC-3′ R:5′-CAAATACAGCTGCAGCAGTTAC-3′ 83 bp
    Beclin1 F:5′-TAATAGCTTCACTCTGATCGGG-3′ R:5′-CAAACAGCGTTTGTAGTTCTGA-3′ 217 bp
    OPN F:5′-AAACACACAGACTTGAGCATTC-3′ R:5′-TTAGGGTCTAGGACTAGCTTGT-3′ 148bp
    α-SMA F:5′-CGTGGCTATTCCTTCGTGACTACTG-3′ R:5′-CGTCAGGCAGTTCGTAGCTCTTC-3′ 148 bp
    LC3 F:5′-CTGTCCTGGATAAGACCAAGTT-3′ R:5′-GTCTTCATCCTTCTCCTGTTCA-3′ 185 bp
    P62 F:5′-TTCTGGGCCAATCGTTTAAATG-3′ R:5′-ATGCTGCAGAAATACCAACATC-3′ 82 bp
    GAPDH F:5′-TCAACAGCAACTCCCACTCT-3′ R:5′-TGCTCAGTGTTGGGGGCCGA-3′
    注:YAP:Yes相关蛋白;α-SMA:α-平滑肌肌动蛋白;OPN:骨桥蛋白;LC3:微管相关蛋白1轻链3;GAPDH:三磷酸甘油醛脱氢酶;F:上游引物;R:下游引物。
    下载: 导出CSV
  • [1]

    Hagan PG, Nienaber CA, Isselbacher EM, et al. The International Registry of Acute Aortic Dissection(IRAD): new insights into an old disease[J]. JAMA, 2000, 283(7): 897-903. doi: 10.1001/jama.283.7.897

    [2]

    Yang K, Ren J, Li X, et al. Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype[J]. Eur Heart J, 2020, 41(26): 2442-2453. doi: 10.1093/eurheartj/ehaa352

    [3]

    Wang F, Chen HZ. Histone Deacetylase SIRT1, Smooth Muscle Cell Function, and Vascular Diseases[J]. Front Pharmacol, 2020, 11: 537519. doi: 10.3389/fphar.2020.537519

    [4]

    Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease[J]. Physiol Rev, 2004, 84(3): 767-801. doi: 10.1152/physrev.00041.2003

    [5]

    Chin DD, Poon C, Wang J, et al. miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype[J]. Biomaterials, 2021, 273: 120810. doi: 10.1016/j.biomaterials.2021.120810

    [6]

    Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism[J]. Dev Cell, 2020, 54(2): 256-267. doi: 10.1016/j.devcel.2020.06.025

    [7]

    姜文剑, 兰峰, 张宏家. 主动脉血管平滑肌细胞凋亡和Hippo-YAP信号通路作用于主动脉夹层发病的研究进展[J]. 中华胸心血管外科杂志, 2016, 32(1): 51-54. doi: 10.3760/cma.j.issn.1001-4497.2016.01.019

    [8]

    Zhou W, Zhao M. How Hippo Signaling Pathway Modulates Cardiovascular Development and Diseases[J]. J Immunol Res, 2018, 2018: 3696914.

    [9]

    Lin M, Yuan W, Su Z, et al. Yes-associated protein mediates angiotensin Ⅱ-induced vascular smooth muscle cell phenotypic modulation and hypertensive vascular remodelling[J]. Cell Prolif, 2018, 51(6): e12517. doi: 10.1111/cpr.12517

    [10]

    Xie C, Guo Y, Zhu T, et al. Yap1 protein regulates vascular smooth muscle cell phenotypic switch by interaction with myocardin[J]. J Biol Chem, 2012, 287(18): 14598-14605. doi: 10.1074/jbc.M111.329268

    [11]

    Han JH, Park HS, Lee DH, et al. Regulation of autophagy by controlling Erk1/2 and mTOR for platelet-derived growth factor-BB-mediated vascular smooth muscle cell phenotype shift[J]. Life Sci, 2021, 267: 118978. doi: 10.1016/j.lfs.2020.118978

    [12]

    Qi Y, Dai F, Gu J, et al. Biomarkers in VSMC phenotypic modulation and vascular remodeling[J]. Pharmazie, 2019, 74(12): 711-714.

    [13]

    Mondaca-Ruff D, Riquelme JA, Quiroga C, et al. Angiotensin Ⅱ-Regulated Autophagy Is Required for Vascular Smooth Muscle Cell Hypertrophy[J]. Front Pharmacol, 2018, 9: 1553.

    [14]

    Munson MJ, Ganley IG. MTOR, PIK3C3, and autophagy: Signaling the beginning from the end[J]. Autophagy, 2015, 11(12): 2375-2376. doi: 10.1080/15548627.2015.1106668

    [15]

    Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13(2): 132-141. doi: 10.1038/ncb2152

    [16]

    Csibi A, Blenis J. Hippo-YAP and mTOR pathways collaborate to regulate organ size[J]. Nat Cell Biol, 2012, 14(12): 1244-1245. doi: 10.1038/ncb2634

    [17]

    Yaghini FA, Song CY, Lavrentyev EN, et al. Angiotensin Ⅱ-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation[J]. Hypertension, 2010, 55(6): 1461-1467. doi: 10.1161/HYPERTENSIONAHA.110.150029

    [18]

    Sherk WM, Khaja MS, Williams DM. Anatomy, Pathology, and Classification of Aortic Dissection[J]. Tech Vasc Interv Radiol, 2021, 24(2): 100746. doi: 10.1016/j.tvir.2021.100746

    [19]

    Milewicz DM, Trybus KM, Guo DC, et al. Altered Smooth Muscle Cell Force Generation as a Driver of Thoracic Aortic Aneurysms and Dissections[J]. Arterioscler Thromb Vasc Biol, 2017, 37(1): 26-34. doi: 10.1161/ATVBAHA.116.303229

    [20]

    Lu QB, Wan MY, Wang PY, et al. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade[J]. Redox Biol, 2018, 14: 656-668. doi: 10.1016/j.redox.2017.11.012

    [21]

    Zhou C, Lin Z, Cao H, et al. Anxa1 in smooth muscle cells protects against acute aortic dissection[J]. Cardiovasc Res, 2022, 118(6): 1564-1582. doi: 10.1093/cvr/cvab109

    [22]

    Huang B, Niu Y, Chen Z, et al. Integrin α9 is involved in the pathopoiesis of acute aortic dissection via mediating phenotype switch of vascular smooth muscle cell[J]. Biochem Biophys Res Commun, 2020, 533(3): 519-525. doi: 10.1016/j.bbrc.2020.08.095

    [23]

    Liu M, Yu T, Li M, et al. Apoptosis repressor with caspase recruitment domain promotes cell proliferation and phenotypic modulation through 14-3-3ε/YAP signaling in vascular smooth muscle cells[J]. J Mol Cell Cardiol, 2020, 147: 35-48. doi: 10.1016/j.yjmcc.2020.08.003

    [24]

    陈琳, 程玲霞, 杨帆, 等. 血管平滑肌细胞自噬对小鼠主动脉夹层形成的影响[J]. 中山大学学报(医学科学版), 2021, 42(2): 226-234. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSYK202102010.htm

    [25]

    Clément M, Chappell J, Raffort J, et al. Vascular Smooth Muscle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms[J]. Arterioscler Thromb Vasc Biol, 2019, 39(6): 1149-1159. doi: 10.1161/ATVBAHA.118.311727

    [26]

    Sun SY, Cao YM, Huo YJ, et al. Nicotinate-curcumin inhibits AngⅡ-induced vascular smooth muscle cell phenotype switching by upregulating Daxx expression[J]. Cell Adh Migr, 2021, 15(1): 116-125. doi: 10.1080/19336918.2021.1909899

    [27]

    Wang N, Xu F, Lu S, et al. Septin4 as an autophagy modulator regulates Angiotensin-Ⅱ mediated VSMCs proliferation and migration[J]. Biochem Biophys Res Commun, 2020, 525(2): 272-279. doi: 10.1016/j.bbrc.2020.02.064

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1329
  • PDF下载数:  397
  • 施引文献:  0
出版历程
收稿日期:  2022-08-24
刊出日期:  2022-12-10

目录