改良版经心外膜诱颤建立2型糖尿病大鼠心肺复苏模型

华天凤, 汪敏捷, 周伍明, 等. 改良版经心外膜诱颤建立2型糖尿病大鼠心肺复苏模型[J]. 临床急诊杂志, 2022, 23(11): 748-753. doi: 10.13201/j.issn.1009-5918.2022.11.002
引用本文: 华天凤, 汪敏捷, 周伍明, 等. 改良版经心外膜诱颤建立2型糖尿病大鼠心肺复苏模型[J]. 临床急诊杂志, 2022, 23(11): 748-753. doi: 10.13201/j.issn.1009-5918.2022.11.002
HUA Tianfeng, WANG Minjie, ZHOU Wuming, et al. Model of cardiac arrest in type 2 diabetes mellitus ratsestablished by modified transcutaneous electrical stimulation on epicardium[J]. J Clin Emerg, 2022, 23(11): 748-753. doi: 10.13201/j.issn.1009-5918.2022.11.002
Citation: HUA Tianfeng, WANG Minjie, ZHOU Wuming, et al. Model of cardiac arrest in type 2 diabetes mellitus ratsestablished by modified transcutaneous electrical stimulation on epicardium[J]. J Clin Emerg, 2022, 23(11): 748-753. doi: 10.13201/j.issn.1009-5918.2022.11.002

改良版经心外膜诱颤建立2型糖尿病大鼠心肺复苏模型

  • 基金项目:
    国家自然科学基金委2020年国自然面上项目(No:82072134);学科建设经费(No:9101001821);2021年高峰学科建设经费(No:9101001804);安徽医科大学基础与临床合作研究提升计划项目(No:019xkjT028);2020年国自然孵育基金(No:2020GMFY05);安徽省教育厅2020年度高校优秀拔尖人才培育资助项目(No:gxyq2020007)
详细信息

Model of cardiac arrest in type 2 diabetes mellitus ratsestablished by modified transcutaneous electrical stimulation on epicardium

More Information
  • 目的探索构建2型糖尿病(T2DM)小动物心肺复苏模型的一种新方法,采用改良后的经心外膜电刺激诱导T2DM大鼠心室颤动,导致大鼠心搏骤停。方法选择健康的SPF级雄性Sprague-Dawley大鼠40只,体重为(250±10)g。其中10只大鼠作为对照组,给予普通饲料喂养并经腹腔注射同等剂量的柠檬酸钠溶液(PH=4.5);另30只大鼠给予高脂高糖饲料前期喂养,模拟糖尿病患者前驱期的肥胖、胰岛素抵抗和(或)葡萄糖不耐受状态,大鼠T2DM造模成功后,选用针灸针作为导电极,采用定量化定位点经胸壁刺入针灸针至达心外膜,持续交流电刺激诱导心室颤动并维持6 mins,然后给予心肺复苏术:呼吸机辅助通气、胸外心脏按压、静脉推注肾上腺素以及电除颤等。诱颤的电流强度为0.5~1.0 mA,电刺激总时间为3 min,电刺激后心电监护均显示心室颤动,心肺复苏后大鼠均恢复自主心率,实验结束后解剖尸体,肉眼观察未发现心外膜出血点和肺部淤血。结果24只大鼠造模2周后的血糖为(17.1±3.4)mmol/L,体重为(468.7±10.4)g,符合T2DM。有效电刺激开始后,本实验24只T2DM大鼠全部成功诱发心搏骤停。诱颤的电流强度为(0.6±0.1)mA,电刺激后诱发出现心搏骤停的时间为(20±6)s,室颤导致的心搏骤停的总时间为6 mins,心肺复苏时间为8 mins,除颤次数(3±2)次。实验结束后解剖尸体,肉眼观未发现心外膜出血点和肺部淤血。结论采用改良后经心外膜诱颤建立2型糖尿病大鼠心搏骤停/心肺复苏模型的操作简单可行,模型稳定,能够满足2型糖尿病患者心搏骤停/心肺复苏基础研究的需要。
  • 加载中
  • 图 1  2组大鼠不同时间点血糖变化情况

    图 2  2组大鼠葡萄糖耐量曲线

    图 3  2组大鼠葡萄糖耐量曲线下面积

    图 4  室颤心电图

    表 1  2组大鼠不同时间点体重变化情况 X±S

    组别 第0周 第4周 第8周 第9周 第10周
    对照组 250.5±4.7 324.3±7.11) 390.2±10.81) 405.3±9.61) 416.3±8.21)
    实验组 249.8±5.62) 392.8±9.21)2) 512.7±8.11)2) 472.7±10.81)2) 468.7±10.42)
    与同组上一测量时间点比较,1)P < 0.05;与对照组比较,2)P < 0.05。
    下载: 导出CSV

    表 2  大鼠诱发CA过程中各项指标变化 X±S

    指标 数值
    数量/只 24
    体重/g 468.7±10.4
    基线MAP/mmHg 419±25
    基线HR/(次·min-1) 122±7
    诱颤电流/mA 0.6±0.1
    诱颤时间/s 20±6
    按压深度/cm 1.1±0.1
    除颤次数/次 3±2
    下载: 导出CSV
  • [1]

    Kucharska-Newton AM, Couper DJ, Pankow JS, et al. Diabetes and the risk of sudden cardiac death, the Atherosclerosis Risk in Communities study[J]. Acta Diabetol, 2010, 47(Suppl 1): 161-168.

    [2]

    Walker AM, Cubbon RM. Sudden cardiac death in patients with diabetes mellitus and chronic heart failure[J]. Diab Vasc Dis Res, 2015, 12(4): 228-233. doi: 10.1177/1479164115573225

    [3]

    Jung YH, Lee BK, Jeung KW, et al. Association between Achievement of Estimated Average Glucose Level and 6-Month Neurologic Outcome in Comatose Cardiac Arrest Survivors: A Propensity Score-Matched Analysis[J]. J Clin Med, 2019, 8(9): 1480.

    [4]

    Liu CH, Hua N, Fu X, et al. Metformin regulates atrial SK2 and SK3 expression through inhibiting the PKC/ERK signaling pathway in type 2 diabetic rats[J]. BMC Cardiovasc Disord, 2018, 18(1): 236. doi: 10.1186/s12872-018-0950-x

    [5]

    Kim YG, Roh SY, Han KD, et al. Hypertension and diabetes including their earlier stage are associated with increased risk of sudden cardiac arrest[J]. Sci Rep, 2022, 12(1): 12307. doi: 10.1038/s41598-022-16543-2

    [6]

    杜兰芳, 李昭屏, 马青变. 亚低温对于心搏骤停患者复苏后心脏功能的影响[J]. 临床急诊杂志, 2019, 20(1): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC201901007.htm

    [7]

    刘国祥, 朱长清, 王世伟, 等. 心搏骤停后综合征相关急性胃肠损伤的研究进展[J]. 临床急诊杂志, 2021, 22(9): 634-640.

    [8]

    Heydemann A. An Overview of Murine High Fat Diet as a Model for Type 2 Diabetes Mellitus[J]. J Diabetes Res, 2016, 2016: 2902351.

    [9]

    Ocak U, Ocak PE, Huang L, et al. Inhibition of PAR-2 Attenuates Neuroinflammation and Improves Short-Term Neurocognitive Functions Via ERK1/2 Signaling Following Asphyxia-Induced Cardiac Arrest in Rats[J]. Shock, 2020, 54(4): 539-547. doi: 10.1097/SHK.0000000000001516

    [10]

    López J, Fernández SN, González R, et al. Different Respiratory Rates during Resuscitation in a Pediatric Animal Model of Asphyxial Cardiac Arrest[J]. PLoS One, 2016, 11(9): e0162185. doi: 10.1371/journal.pone.0162185

    [11]

    Sharp WW, Beiser DG, Fang YH, et al. Inhibition of the mitochondrial fission protein dynamin-related protein 1 improves survival in a murine cardiac arrest model[J]. Crit Care Med, 2015, 43(2): e38-47.

    [12]

    Liu Y, Wang P, Wen C, et al. Endovascular hypothermia improves post-resuscitation myocardial dysfunction by increasing mitochondrial biogenesis in a pig model of cardiac arrest[J]. Cryobiology, 2019, 89(1): 6-13.

    [13]

    Shah AR, Khan MS, Hirahara AM, et al. A real-time system for selectively sensing and pacing the His-bundle during sinus rhythm and ventricular fibrillation[J]. Biomed Eng Online, 2020, 19(1): 19.

    [14]

    左艳芳, 宋凤卿, 陈蒙华, 等. WIN55, 212-2在心肺复苏后对神经细胞凋亡的作用[J]. 中华急诊医学杂志, 2016, 25(4): 455-459. https://cdmd.cnki.com.cn/Article/CDMD-10422-1018106319.htm

    [15]

    Chen MH, Liu TW, Xie L, et al. Ventricular fibrillation induced by transoesophageal cardiac pacing: a new model of cardiac arrest in rats[J]. Resuscitation, 2007, 74(3): 546-551.

    [16]

    Budhram GR, Mader TJ, Lutfy L, et al. Left ventricular thrombus development during ventricular fibrillation and resolution during resuscitation in a swine model of sudden cardiac arrest[J]. Resuscitation, 2014, 85(5): 689-693.

    [17]

    Lin JY, Liao XX, Li H, et al. Model of cardiac arrest in rats by transcutaneous electrical epicardium stimulation[J]. Resuscitation, 2010, 81(9): 1197-1204.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1447
  • PDF下载数:  178
  • 施引文献:  0
出版历程
收稿日期:  2022-09-27
刊出日期:  2022-11-10

目录