基于偏振多光谱成像的非接触式心率测量脉搏波提取技术

刘霜, 乔文龙, 陈沛权, 等. 基于偏振多光谱成像的非接触式心率测量脉搏波提取技术[J]. 临床急诊杂志, 2022, 23(2): 110-115. doi: 10.13201/j.issn.1009-5918.2022.02.007
引用本文: 刘霜, 乔文龙, 陈沛权, 等. 基于偏振多光谱成像的非接触式心率测量脉搏波提取技术[J]. 临床急诊杂志, 2022, 23(2): 110-115. doi: 10.13201/j.issn.1009-5918.2022.02.007
LIU Shuang, QIAO Wenlong, CHEN Peiquan, et al. Pulse wave extraction for non-contact heart rate measurement based on polarization multispectral imaging[J]. J Clin Emerg, 2022, 23(2): 110-115. doi: 10.13201/j.issn.1009-5918.2022.02.007
Citation: LIU Shuang, QIAO Wenlong, CHEN Peiquan, et al. Pulse wave extraction for non-contact heart rate measurement based on polarization multispectral imaging[J]. J Clin Emerg, 2022, 23(2): 110-115. doi: 10.13201/j.issn.1009-5918.2022.02.007

基于偏振多光谱成像的非接触式心率测量脉搏波提取技术

  • 基金项目:
    北京协和医学基金-睿E(睿意)急诊医学研究专项基金
详细信息

Pulse wave extraction for non-contact heart rate measurement based on polarization multispectral imaging

More Information
  • 目的 成像式光电容积描记(IPPG)技术是一种非接触式生理参数检测技术,目前已经广泛用于常用生理参数的测量中,但准确性和稳定性不够。本研究的目的是通过探索一种新的从手掌中提取脉搏的方法,从而提高测量数据的精度。方法 本研究利用偏振多光谱成像技术,研究了脉搏波在不同波长和偏振态组合下的信噪比(SNR)变化。使用白光LED作为主动光源,并用7种波长滤光片(450、525、550、590、610、650、690nm)和4种偏光片实现生物组织的偏光多光谱成像。使用商用RGB相机作为获取人手掌偏振多光谱图像的探测器,然后结合成像光电体积描记技术,从偏振多光谱图像中提取脉搏波。结果 本研究利用普通商用RGB相机实现了高质量脉搏波的提取,提出了一种全局平均帧间差分算法(GA-IFD),将此方法结合运动跟踪算法来实现目标区域(ROI)的自适应选择,使组织的血液灌注与ROI的选择相关联。该算法能有效避免噪声干扰,提高脉搏波质量。本研究方法以非接触方式估计了5名志愿者的心率,达到较高的测量精度(最小MAE 0.67,最大MAE 2.30)。根据Bland-Altman一致性分析,该方法的心率测量值与真实值吻合度高。结论 本研究创新性提出了一种从手掌中提取心脏脉搏波的非接触方法,这对提高人体非接触式生理参数测量精度具有重要意义。
  • 加载中
  • 图 1  心脏脉搏波提取系统

    图 2  GA-IFD算法

    图 3  偏振多光谱实验结果

    图 4  ROI(λ:690 nm,d:25)

    图 5  脉搏波(λ:690 nm,d:25)

    图 6  偏振多光谱脉冲波的SNR

    图 7  估计心率的测试场景

    图 8  心率估计方法的Bland-Altman图

    表 1  心率估计结果 bpm

    Subject ID MAE RMSE SD
    1 0.67 0.96 0.69
    2 1.61 2.11 1.37
    3 0.84 1.08 0.68
    4 0.98 1.46 1.08
    5 2.30 2.55 1.55
    下载: 导出CSV
  • [1]

    Hertzman AB. The blood supply of various skin areas as estimated by the photoelectric plethysmograph[J]. Am J Physiol Legacy Content, 1938, 124(2), 328-340. doi: 10.1152/ajplegacy.1938.124.2.328

    [2]

    Hertzman AB. Observation on the finger volume pulse recorded photoelectrically[J]. Am J Physiol, 1937, 119, 334-335.

    [3]

    Wu AT, Blazek V, Schmitt HJ. Photoplethysmography imaging: a new noninvasive and noncontact method for mapping of the dermal perfusion changes[C]//Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics. International Society for Optics and Photonics, 2000, 4163: 62-70.

    [4]

    Poh MZ, McDuff DJ, Picard RW. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation[J]. Optics Express, 2010, 18(10): 10762-10774. doi: 10.1364/OE.18.010762

    [5]

    Poh MZ, McDuff DJ, Picard RW. Advancements in noncontact, multiparameter physiological measurements using a webcam[J]. IEEE Trans Biomed Eng, 2011, 58(1): 7-11. doi: 10.1109/TBME.2010.2086456

    [6]

    Wieringa FP, Mastik F, van der Steen AF. Contactless multiple wavelength photoplethysmographic imaging: a first step toward "SpO2 camera" technology[J]. Ann Biomed Eng, 2005, 33(8), 1034-1041. doi: 10.1007/s10439-005-5763-2

    [7]

    Takano C, Ohta Y. Heart rate measurement based on a time-lapse image[J]. Med Eng Phys, 2007, 29(8): 853-857. doi: 10.1016/j.medengphy.2006.09.006

    [8]

    Humphreys K, Ward T, Markham C. Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry[J]. Rev Sci Instrum, 2007, 78(4): 044304. doi: 10.1063/1.2724789

    [9]

    Zheng J, Hu S, Chouliaras V, et al. Feasibility of imaging photoplethysmography[C]//2008 International Conference on BioMedical Engineering and Informatics. IEEE, 2008, 2: 72-75.

    [10]

    Rubins U, Miscuks A, Rubenis O, et al. The analysis of blood flow changes under local anesthetic input using non-contact technique[J]. 3rd International Conference on Biomedical Engineering and Informatics, University of Latvia, 2010.

    [11]

    Poh MZ, McDuff D, Picard R. A medical mirror for non-contact health monitoring[M]//ACM SIGGRAPH 2011 Emerging Technologies, 2011: 1-1.

    [12]

    McDuff D, Gontarek S, Picard RW. Remote detection of photoplethysmographic systolic and diastolic peaks using a digital camera[J]. IEEE Trans Biomed Eng, 2014, 61(12): 2948-2954. doi: 10.1109/TBME.2014.2340991

    [13]

    Joachim J, Coutrot M, Millasseau S, et al. Real-time estimation of mean arterial blood pressure based on photoplethysmography dicrotic notch and perfusion index[J]. A pilot study[J]. J Clin Monit Comput, 2021, 35(2): 395-404.

    [14]

    Mousavi SS, Firouzmand M, Charmi M., et al. Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method[J]. Biomed Signal Process Control, 2019, 47, 196-206. doi: 10.1016/j.bspc.2018.08.022

    [15]

    Balmer J, Smith R, Pretty CG, et al. Accurate end systole detection in dicrotic notch-less arterial pressure waveforms[J]. J Clin Monit Comput, 2021, 35(1): 79-88. doi: 10.1007/s10877-020-00473-3

    [16]

    张煜, 刘保真, 单聪淼, 等. 基于IPPG技术的生理参数检测综述[J]. 医疗卫生装备, 2020. https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS202002021.htm

  • 加载中

(8)

(1)

计量
  • 文章访问数:  2265
  • PDF下载数:  815
  • 施引文献:  0
出版历程
收稿日期:  2022-01-24
刊出日期:  2022-02-10

目录