-
摘要: 脓毒症是威胁人类健康的急危重症之一,其发病后的致残率及致死率均处于较高水平,早期发现并尽早治疗脓毒症可以有效降低这一比例。因此,对脓毒症的早期判别已成为国际共识。目前,有很多临床手段及科学研究在脓毒症的识别和评估方面进行了探索,并取得了相应的进展。该文从脓毒症相关标志物、病原体的早期识别、宿主的临床易感性及综合预测模型的构建4个方面对脓毒症早期识别进行系统阐述,以期为临床医务工作者提供参考。Abstract: Sepsis is one of the critical illnesses that threaten human health, with a excessive fee of incapacity and mortality.Early detection and treatment of sepsis can effectively reduce this ratio.Therefore, the early identification of sepsis has end up an worldwide consensus. At present, there are many clinical methods and scientific researches that have been explored in the identification and evaluation of sepsis, and corresponding progress has been made.This article reviews the early identification of sepsis in four aspects: sepsis-related markers, early identification of pathogens, clinical susceptibility of hosts and construction of a comprehensive prediction model, in order to provide reference for clinical medical workers.
-
Key words:
- sepsis /
- early recognition /
- markers /
- prediction model
-
-
[1] Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. doi: 10.1016/S0140-6736(19)32989-7
[2] Xie J, Wang H, Kang Y, et al. The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey[J]. Crit Care Med, 2020, 48(3): e209-e218. doi: 10.1097/CCM.0000000000004155
[3] Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181-1247. doi: 10.1007/s00134-021-06506-y
[4] Seymour CW, Gesten F, Prescott HC, et al. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis[J]. N Engl J Med, 2017, 376(23): 2235-2244. doi: 10.1056/NEJMoa1703058
[5] 王仲, 魏捷, 朱华栋, 等. 中国脓毒症早期预防与阻断急诊专家共识[J]. 临床急诊杂志, 2020, 21(7): 517-529. http://zzlc.cbpt.cnki.net/WKC/WebPublication/paperDigest.aspx?paperID=c441f903-8d56-4e1e-bc33-972383f6cb59
[6] Tan M, Lu Y, Jiang H, et al. The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: A systematic review and meta-analysis[J]. J Cell Biochem, 2019, 120(4): 5852-5859. doi: 10.1002/jcb.27870
[7] Liu Y, Hou JH, Li Q, et al. Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome: a systematic review and meta-analysis[J]. Springerplus, 2016, 5(1): 2091. doi: 10.1186/s40064-016-3591-5
[8] Kondo Y, Umemura Y, Hayashida K, et al. Diagnostic value of procalcitonin and presepsin for sepsis in critically ill adult patients: a systematic review and meta-analysis[J]. J Intensive Care, 2019, 7: 22. doi: 10.1186/s40560-019-0374-4
[9] Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets, an updated view[J]. Mediators Inflamm, 2013, 2013: 165974.
[10] Rios-Toro JJ, Marquez-Coello M, García-Álvarez JM, et al. Soluble membrane receptors, interleukin 6, procalcitonin and C reactive protein as prognostic markers in patients with severe sepsis and septic shock[J]. PLoS One, 2017, 12(4): e0175254. doi: 10.1371/journal.pone.0175254
[11] Song J, Park DW, Moon S, et al. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions[J]. BMC Infect Dis, 2019, 19(1): 968. doi: 10.1186/s12879-019-4618-7
[12] Dimoula A, Pradier O, Kassengera Z, et al. Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients[J]. Clin Infect Dis, 2014, 58(6): 820-829. doi: 10.1093/cid/cit936
[13] Yeh CF, Wu CC, Liu SH, et al. Comparison of the accuracy of neutrophil CD64, procalcitonin, and C-reactive protein for sepsis identification: a systematic review and meta-analysis[J]. Ann Intensive Care, 2019, 9(1): 5. doi: 10.1186/s13613-018-0479-2
[14] Pierrakos C, Velissaris D, Bisdorff M, et al. Biomarkers of sepsis: time for a reappraisal[J]. Crit Care, 2020, 24(1): 287. doi: 10.1186/s13054-020-02993-5
[15] Wang JF, Yu ML, Yu G, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis[J]. Biochem Biophys Res Commun, 2010, 394(1): 184-188. doi: 10.1016/j.bbrc.2010.02.145
[16] Ma Y, Vilanova D, Atalar K, et al. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis[J]. PLoS One, 2013, 8(10): e75918. doi: 10.1371/journal.pone.0075918
[17] Wang L, Wang HC, Chen C, et al. Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients[J]. Exp Ther Med, 2013, 5(4): 1101-1104. doi: 10.3892/etm.2013.937
[18] Neill LA, Sheedy FJ. MicroRNAs: the fine-tuners of Toll-like receptor signalling[J]. Nat Rev Immunol, 2011, 11(3): 163-175. doi: 10.1038/nri2957
[19] Kingsley S, Bhat BV. Role of microRNAs in sepsis[J]. Inflamm Res, 2017, 66(7): 553-569. doi: 10.1007/s00011-017-1031-9
[20] Liu J, Yang Y, Lu R, et al. MicroRNA-381-3p signatures as a diagnostic marker in patients with sepsis and modulates sepsis-steered cardiac damage and inflammation by binding HMGB1[J]. Bioengineered, 2021, 12(2): 11936-11946. doi: 10.1080/21655979.2021.2006967
[21] Caserta S, Mengozzi M, Kern F, et al. Severity of Systemic Inflammatory Response Syndrome Affects the Blood Levels of Circulating Inflammatory-Relevant MicroRNAs[J]. Front Immunol, 2017, 8: 1977.
[22] Wang Q, Liu K, Jin C. Clinical value of microRNA-378a-3p in sepsis and its role in sepsis-induced inflammation and cardiac dysfunction[J]. Bioengineered, 2021, 12(1): 8496-8504. doi: 10.1080/21655979.2021.1985339
[23] Goh C, Knight JC. Enhanced understanding of the host-pathogen interaction in sepsis: new opportunities for omic approaches[J]. Lancet Respir Med, 2017, 5(3): 212-223. doi: 10.1016/S2213-2600(17)30045-0
[24] Skibsted S, Bhasin MK, Aird WC, et al. Bench-to-bedside review: future novel diagnostics for sepsis-a systems biology approach[J]. Crit Care, 2013, 17(5): 231. doi: 10.1186/cc12693
[25] Mansur A, Liese B, Steinau M, et al. The CD14 rs2569190 TT Genotype Is Associated with an Improved 30-Day Survival in Patients with Sepsis: A Prospective Observational Cohort Study[J]. PLoS One, 2015, 10(5): e0127761. doi: 10.1371/journal.pone.0127761
[26] Zheng R, Fu Z, Zhao Z. Association of Transforming Growth Factor β1 Gene Polymorphisms and Inflammatory Factor Levels with Susceptibility to Sepsis[J]. Genet Test Mol Biomarkers, 2021, 25(3): 187-198. doi: 10.1089/gtmb.2020.0143
[27] McHugh L, Seldon TA, Brandon RA, et al. A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts[J]. PLoS Med, 2015, 12(12): e1001916. doi: 10.1371/journal.pmed.1001916
[28] Xu D, Liao S, Li P, et al. Metabolomics Coupled with Transcriptomics Approach Deciphering Age Relevance in Sepsis[J]. Aging Dis, 2019, 10(4): 854-870. doi: 10.14336/AD.2018.1027
[29] Mocellin S, Rossi CR, Traldi P, et al. Molecular oncology in the post-genomic era: the challenge of proteomics[J]. Trends Mol Med, 2004, 10(1): 24-32. doi: 10.1016/j.molmed.2003.11.001
[30] Kalenka A, Feldmann RE Jr, Otero K, et al. Changes in the serum proteome of patients with sepsis and septic shock[J]. Anesth Analg, 2006, 103(6): 1522-1526. doi: 10.1213/01.ane.0000242533.59457.70
[31] Hayashi N, Yamaguchi S, Rodenburg F, et al. Multiple biomarkers of sepsis identified by novel time-lapse proteomics of patient serum[J]. PLoS One, 2019, 14(9): e0222403. doi: 10.1371/journal.pone.0222403
[32] Ilaiwy A, Ten HG, Bain JR, et al. Identification of Metabolic Changes in Ileum, Jejunum, Skeletal Muscle, Liver, and Lung in a Continuous I.V. Pseudomonas aeruginosa Model of Sepsis Using Nontargeted Metabolomics Analysis[J]. Am J Pathol, 2019, 189(9): 1797-1813. doi: 10.1016/j.ajpath.2019.05.021
[33] Ping F, Li Y, Cao Y, et al. Metabolomics Analysis of the Development of Sepsis and Potential Biomarkers of Sepsis-Induced Acute Kidney Injury[J]. Oxid Med Cell Longev, 2021, 2021: 6628847.
[34] Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287
[35] Dubourg G, Raoult D, Fenollar F. Emerging methodologies for pathogen identification in bloodstream infections: an update[J]. Expert Rev Mol Diagn, 2019, 19(2): 161-173. doi: 10.1080/14737159.2019.1568241
[36] 刘小琦, 杜琼, 刘祥琴. 阴道分泌物念珠菌感染检测方法对比分析[J]. 重庆医学, 2017, 46(35): 4927-4929. doi: 10.3969/j.issn.1671-8348.2017.35.009
[37] Ma X, Li Y, Liang Y, et al. Development of a DNA microarray assay for rapid detection of fifteen bacterial pathogens in pneumonia[J]. BMC Microbiol, 2020, 20(1): 177. doi: 10.1186/s12866-020-01842-3
[38] Dark P, Blackwood B, Gates S, et al. Accuracy of LightCycler SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis[J]. Intensive Care Med, 2015, 41(1): 21-33. doi: 10.1007/s00134-014-3553-8
[39] Galiana A, Coy J, Gimeno A, et al. Evaluation of the Sepsis Flow Chip assay for the diagnosis of blood infections[J]. PLoS One, 2017, 12(5): e0177627. doi: 10.1371/journal.pone.0177627
[40] Decuypere S, Meehan CJ, Van Puyvelde S, et al. Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach[J]. PLoS Negl Trop Dis, 2016, 10(2): e0004470. doi: 10.1371/journal.pntd.0004470
[41] Long Y, Zhang Y, Gong Y, et al. Diagnosis of Sepsis with Cell-free DNA by Next-Generation Sequencing Technology in ICU Patients[J]. Arch Med Res, 2016, 47(5): 365-371. doi: 10.1016/j.arcmed.2016.08.004
[42] Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis[J]. Crit Care Med, 2006, 34(1): 15-21. doi: 10.1097/01.CCM.0000194535.82812.BA
[43] Starr ME, Saito H. Sepsis in old age: review of human and animal studies[J]. Aging Dis, 2014, 5(2): 126-136.
[44] Gavazzi G, Krause KH. Ageing and infection[J]. Lancet Infect Dis, 2002, 2(11): 659-666. doi: 10.1016/S1473-3099(02)00437-1
[45] Wang Z, Ren J, Wang G, et al. Association Between Diabetes Mellitus and Outcomes of Patients with Sepsis: A Meta-Analysis[J]. Med Sci Monit, 2017, 23: 3546-3555. doi: 10.12659/MSM.903144
[46] Schuetz P, Castro P, Shapiro NI. Diabetes and sepsis: preclinical findings and clinical relevance[J]. Diabetes Care, 2011, 34(3): 771-778. doi: 10.2337/dc10-1185
[47] Perl SH, Bloch O, Zelnic-Yuval D, et al. Sepsis-induced activation of endogenous GLP-1 system is enhanced in type 2 diabetes[J]. Diabetes Metab Res Rev, 2018, 34(4): e2982. doi: 10.1002/dmrr.2982
[48] Liang H, Ding X, Li L, et al. Association of preadmission metformin use and mortality in patients with sepsis and diabetes mellitus: a systematic review and meta-analysis of cohort studies[J]. Crit Care, 2019, 23(1): 50. doi: 10.1186/s13054-019-2346-4
[49] Shah FA, Mahmud H, Gallego-Martin T, et al. Therapeutic Effects of Endogenous Incretin Hormones and Exogenous Incretin-Based Medications in Sepsis[J]. J Clin Endocrinol Metab, 2019, 104(11): 5274-5284. doi: 10.1210/jc.2019-00296
[50] Tew M, Dalziel K, Thursky K, et al. Excess cost of care associated with sepsis in cancer patients: Results from a population-based case-control matched cohort[J]. PLoS One, 2021, 16(8): e0255107. doi: 10.1371/journal.pone.0255107
[51] McCreery RJ, Florescu DF, Kalil AC. Sepsis in Immunocompromised Patients Without Human Immunodeficiency Virus[J]. J Infect Dis, 2020, 222(Suppl 2): S156-S165.
[52] Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine[J]. Chest, 1992, 101(6): 1644-1655. doi: 10.1378/chest.101.6.1644
[53] Vincent JL, de Mendonça A, Cantraine F, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on "sepsis-related problems" of the European Society of Intensive Care Medicine[J]. Crit Care Med, 1998, 26(11): 1793-1800. doi: 10.1097/00003246-199811000-00016
[54] Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 762-774. doi: 10.1001/jama.2016.0288
[55] Probst L, Schalk E, Liebregts T, et al. Prognostic accuracy of SOFA, qSOFA and SIRS criteria in hematological cancer patients: a retrospective multicenter study[J]. J Intensive Care, 2019, 7: 41. doi: 10.1186/s40560-019-0396-y
[56] Tian H, Zhou J, Weng L, et al. Accuracy of qSOFA for the diagnosis of sepsis-3: a secondary analysis of a population-based cohort study[J]. J Thorac Dis, 2019, 11(5): 2034-2042. doi: 10.21037/jtd.2019.04.90
[57] Harada M, Takahashi T, Haga Y, et al. Comparative study on quick sequential organ failure assessment, systemic inflammatory response syndrome and the shock index in prehospital emergency patients: single-site retrospective study[J]. Acute Med Surg, 2019, 6(2): 131-137. doi: 10.1002/ams2.391
[58] Serafim R, Gomes JA, Salluh J, et al. A Comparison of the Quick-SOFA and Systemic Inflammatory Response Syndrome Criteria for the Diagnosis of Sepsis and Prediction of Mortality: A Systematic Review and Meta-Analysis[J]. Chest, 2018, 153(3): 646-655. doi: 10.1016/j.chest.2017.12.015
[59] Long B, April MD. Are qSOFA Criteria Better Than the Systemic Inflammatory Response Syndrome Criteria for Diagnosing Sepsis and Predicting Inhospital Mortality?[J]. Ann Emerg Med, 2018, 72(4): 470-472. doi: 10.1016/j.annemergmed.2018.03.008
[60] Moreno-Torres V, Royuela A, Munez E, et al. Better prognostic ability of NEWS2, SOFA and SAPS-Ⅱ in septic patients[J]. Med Clin(Barc), 2021.
[61] Beam AL, Kohane IS. Big Data and Machine Learning in Health Care[J]. JAMA, 2018, 319(13): 1317-1318. doi: 10.1001/jama.2017.18391
[62] Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare[J]. Nat Biomed Eng, 2018, 2(10): 719-731. doi: 10.1038/s41551-018-0305-z
[63] Bedoya AD, Futoma J, Clement ME, et al. Machine learning for early detection of sepsis: an internal and temporal validation study[J]. JAMA Open, 2020, 3(2): 252-260. doi: 10.1093/jamiaopen/ooaa006
-
计量
- 文章访问数: 3780
- PDF下载数: 4692
- 施引文献: 0