Predicting prognosis of non-ST segment elevation acute coronary syndrome patients based on echocardiographic parameters: A retrospective cohort study
-
摘要: 目的 探索超声心动图参数对于非ST段抬高型急性冠状动脉综合征(non-ST segment elevation acute coronary syndrome,NSTE-ACS)患者长期预后的预测能力。 方法 本研究为回顾性研究,纳入对象为2020年3月1日—2023年3月31日就诊于我院急诊科、明确诊断为NSTE-ACS的患者847例。根据随访结果,将纳入患者分为存活组(717例)和死亡组(130例)。收集患者一般情况、实验室指标、就诊后首次超声心动图参数等临床数据,采用logistic回归方法分析基于超声心动图参数的NSTE-ACS患者全因死亡的独立危险因素。 结果 847例NSTE-ACS患者中男641例(75.7%),平均年龄(66±12)岁;非ST段抬高型心肌梗死488例(57.6%),不稳定型心绞痛359例(42.4%)。中位随访时间2.5(1.8,2.9)年。存活组和死亡组患者左心室内径、左心房内径、右心房内径、舒张晚期二尖瓣环速度、舒张早期二尖瓣前向血流速度、舒张早期二尖瓣环速度、舒张早期二尖瓣前向血流速度/舒张早期二尖瓣环速度、左心室射血分数和室壁运动欠协调比例差异均有统计学意义(P < 0.05)。多因素logistic回归分析显示,左心房内径(OR=1.049,95%CI 1.017~1.082,P=0.002)、右心房内径(OR=1.040,95%CI 1.006~1.075,P=0.020)、舒张早期二尖瓣前向血流速度(OR=3.206,95%CI 1.512~6.798,P=0.002)、舒张早期二尖瓣环速度(OR=0.878,95%CI 0.776~0.993,P=0.038)、左心室射血分数 < 50%(OR=2.841,95%CI 1.697~4.757,P < 0.001)是NSTE-ACS患者长期全因死亡的独立危险因素。 结论 左心房内径、右心房内径、舒张早期二尖瓣前向血流速度、舒张早期二尖瓣环速度和左心室射血分数 < 50%是NSTE-ACS患者长期全因死亡的独立危险因素,基于超声心动图参数可有效预测NSTE-ACS患者的长期预后。
-
关键词:
- 非ST段抬高型急性冠脉综合征 /
- 超声心动图 /
- 预后
Abstract: Objective To explore the predictive ability of echocardiographic parameters for long-term prognosis in patients with non-ST segment elevation acute coronary syndrome(NSTE-ACS). Methods This study is a retrospective cohort study, including 847 patients diagnosed with NSTE-ACS who visited the Emergency Department of our hospital from March 1, 2020 to March 31, 2023. According to follow-up results, patients were divided into a survival group(717 cases) and a death group(130 cases). Clinical data, including general information, laboratory indicators, and echocardiographic parameters were collected, and logistic regression was used to analyze the independent risk factors for all-cause mortality in NSTE-ACS patients based on echocardiographic parameters. Results Among 847 NSTE-ACS patients, there were 641 males(75.7%), with an average age of (66±12) years old. There were 488 cases(57.6%) of non-ST segment elevation myocardial infarction and 359 cases(42.4%) of unstable angina. The median follow-up time was 2.5(1.8, 2.9) years. Significant differences were observed in the left ventricular diameter, the left atrial diameter, the right atrial diameter, the late diastolic mitral annular velocity, the early diastolic transmitral flow velocity, the early diastolic mitral annular velocity, the early diastolic transmitral flow velocity/the early diastolic mitral annular velocity, the left ventricular ejection fraction and the proportion of ventricular wall movement incoordination between the survival group and the death group(P < 0.05). Multiple logistic regression analysis showed that, the left atrial diameter(OR=1.049, 95%CI 1.017-1.082, P=0.002), the right atrial diameter(OR=1.040, 95%CI 1.006-1.075, P=0.020), the early diastolic transmitral flow velocity(OR=3.206, 95%CI 1.512-6.798, P=0.002), the early diastolic mitral annular velocity(OR=0.878, 95%CI 0.776-0.993, P=0.038) and the left ventricular ejection fraction < 50%(OR=2.841, 95%CI 1.697-4.757, P < 0.001) were independent risk factors for long-term all-cause mortality in NSTE-ACS patients. Conclusion The left atrial diameter, the right atrial diameter, the early diastolic transmitral flow velocity, the early diastolic mitral annular velocity, and the left ventricular ejection fraction < 50% are independent risk factors for long-term all-cause mortality in patients with NSTE-ACS. Echocardiographic parameters can effectively predict the long-term prognosis of NSTE-ACS patients. -
-
表 1 存活组与死亡组患者基线临床特征比较
X±S,M(P25,P75) 临床特征 总体(847例) 存活组(717例) 死亡组(130例) P 一般情况 年龄/岁 66±12 64±12 73±10 < 0.001 男性/例(%) 641(75.7) 544(75.9) 97(74.6) 0.759 BMI/(kg/m2) 24.3±3.4 24.5±3.3 23.2±4.1 < 0.001 病史 发病至就诊时间/h 72(10,240) 48(10,240) 72(12,240) 0.451 吸烟史/例(%) 378(44.6) 324(45.2) 54(41.5) 0.441 饮酒史/例(%) 235(27.7) 204(28.5) 31(23.8) 0.281 糖尿病/例(%) 288(34.0) 223(31.1) 65(50.0) < 0.001 高血压/例(%) 519(61.3) 428(59.7) 91(70.0) 0.026 生命体征 收缩压/mmHg△ 136±23 137±23 131±23 0.004 舒张压/mmHg 82±15 82±15 78±15 0.008 心率/(次/min) 81±16 80±15 86±18 0.001 呼吸/(次/min) 20±5 20±5 20±2 0.326 Killip分级≥2/例(%) 238(28.1) 170(23.7) 68(52.3) < 0.001 实验室指标 血红蛋白/(g/L) 132±22 135±21 117±25 < 0.001 血小板计数/(×109/L) 193±68 195±68 183±68 0.072 白细胞计数/(×109/L) 7.7(6.3,9.6) 7.7(6.3,9.6) 7.6(6.3,10.5) 0.228 总胆红素/(μmol/L) 10.0(7.5,13.5) 10.2(7.7,13.4) 8.8(6.2,14.6) 0.046 ALT/(IU/L) 25(17,36) 26(18,36) 20(14,32) 0.003 AST/(IU/L) 29(21,48) 28(21,47) 31(21,68) 0.256 白蛋白/(g/L) 41±4 42±4 38±5 < 0.001 血糖/(mmol/L) 7.4(6.1,9.9) 7.3(6.1,9.6) 8.4(6.1,12.1) 0.004 尿素/(mmol/L) 5.9(4.7,7.6) 5.7(4.6,7.2) 7.5(5.8,10.6) < 0.001 肌酐/(μmol/L) 81(68,100) 79(67,96) 101(78,154) < 0.001 甘油三酯/(mmol/L) 1.53(1.05,2.29) 1.58(1.08,2.41) 1.29(0.93,1.79) < 0.001 胆固醇/(mmol/L) 4.04(3.27,4.90) 4.08(3.32,4.95) 3.79(3.05,4.61) 0.006 HDL-C/(mmol/L) 1.06(0.89,1.29) 1.06(0.89,1.29) 1.07(0.88,1.31) 0.983 LDL-C/(mmol/L) 2.40(1.72,3.11) 2.44(1.76,3.15) 2.20(1.51,2.93) 0.021 血钾/(mmol/L) 3.78±0.43 3.75±0.40 3.92±0.53 0.001 PT/s 10.8±1.3 10.6±1.1 11.6±2.0 < 0.001 APTT/s 27.8±6.4 27.6±5.7 28.9±9.2 0.135 纤维蛋白原/(g/L) 3.57±1.22 3.46±1.16 4.17±1.37 < 0.001 D-二聚体/(mg/L FEU) 0.40(0.22,0.92) 0.36(0.21,0.75) 0.95(0.48,1.81) < 0.001 肌红蛋白/(ng/mL) 39.4(24.2,87.4) 35.5(22.8,74.4) 77.3(41.4,222.4) < 0.001 CK-MB/(ng/mL) 3.02(1.57,12.83) 2.81(1.53,12.61) 3.80(2.21,14.82) 0.007 NT-proBNP/(ng/L) 543(150,1 907) 424(125,1 271) 2 827(746,9 797) < 0.001 肌钙蛋白T/(ng/L) 113.6(17.2,550.7) 91.4(15.4,463.0) 281.9(53.4,1 148.0) < 0.001 并发症/例(%) 肺部感染 110(13.0) 67(9.3) 43(33.1) < 0.001 心律失常 112(13.2) 82(11.4) 30(23.1) < 0.001 诊断/例(%) < 0.001 UA 359(42.4) 330(46.0) 29(22.3) NSTEMI 488(57.6) 387(54.0) 101(77.7) PCI治疗▲/例(%) 575(67.9) 494(68.9) 81(62.3) 0.139 注:△1 mmHg=0.133 kPa;▲PCI:经皮冠状动脉介入治疗。 表 2 存活组与死亡组患者超声心动图参数比较
X±S,M(P25,P75) 超声心动图参数 存活组
(717例)死亡组
(130例)P LV/mm 50±6 52±7 < 0.001 LA/mm 37±6 40±8 < 0.001 RV/mm 22±3 22±3 0.874 RA/mm 34±5 36±8 0.005 IVS/mm 11±2 12±2 0.128 LVPW/mm 10±1 10±1 0.239 AO/mm 33±3 33±4 0.120 AAO/mm 34±4 35±4 0.052 MPA/mm 22±3 23±3 0.210 E峰/(m/s) 0.7(0.6,0.9) 0.9(0.6,1.1) < 0.001 A峰/(m/s) 0.9(0.7,1.0) 0.9(0.7,1.0) 0.417 AV/(m/s) 1.4±0.3 1.3±0.3 0.194 PV/(m/s) 0.9(0.8,1.0) 0.9(0.8,1.0) 0.926 e峰/(cm/s) 5.7±1.8 5.3±1.7 0.028 a峰/(cm/s) 8.1±2.0 7.6±1.9 0.010 E/e 14.4±6.6 16.6±7.6 0.002 EDV/mL 114±33 120±41 0.102 ESV/mL 49±30 56±30 0.012 LVEF/% 58±12 51±14 < 0.001 室壁运动欠协
调/例(%)310(43.2) 85(65.4) < 0.001 表 3 影响NSTE-ACS患者全因死亡的logistic回归分析
影响因素 单因素logistic回归分析 多因素logistic回归分析 OR 95%CI P OR 95%CI P LV 1.055 1.027~1.083 < 0.001 LA 1.076 1.048~1.105 < 0.001 1.049 1.017~1.082 0.002 RA 1.062 1.030~1.095 < 0.001 1.040 1.006~1.075 0.020 E峰 4.564 2.307~9.031 < 0.001 3.206 1.512~6.798 0.002 e峰 0.887 0.792~0.993 0.038 0.878 0.776~0.993 0.038 a峰 0.884 0.805~0.971 0.010 E/e 1.040 1.016~1.065 0.001 ESV 1.007 1.001~1.013 0.013 LVEF < 50% 3.071 2.079~4.536 < 0.001 2.841 1.697~4.757 < 0.001 PCI 0.746 0.506~1.100 0.140 表 4 影响NSTEMI患者全因死亡的Logistic回归分析
影响因素 单因素logistic回归分析 多因素logistic回归分析 OR 95%CI P OR 95%CI P LV 1.052 1.020~1.086 0.001 LA 1.069 1.037~1.103 < 0.001 1.044 1.007~1.082 0.019 RA 1.061 1.025~1.009 0.001 1.041 1.002~1.080 0.039 E峰 3.738 1.698~8.228 0.001 2.397 1.038~5.535 0.041 e峰 0.891 0.784~1.012 0.076 a峰 0.920 0.826~1.025 0.130 E/e 1.042 1.012~1.072 0.005 ESV 1.006 0.999~1.013 0.080 LVEF < 50% 3.235 2.051~5.104 < 0.001 3.478 1.947~6.213 < 0.001 PCI 0.555 0.349~0.882 0.013 0.570 0.346~0.938 0.027 -
[1] Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation[J]. Eur Heart J, 2021, 42(14): 1289-1367. doi: 10.1093/eurheartj/ehaa575
[2] Balasubramanian RN, Mills GB, Wilkinson C, et al. Role and relevance of risk stratification models in the modern-day management of non-ST elevation acute coronary syndromes[J]. Heart, 2023, 109(7): 504-510.
[3] Sabatine MS, Braunwald E. Thrombolysis In Myocardial Infarction(TIMI)Study Group: JACC Focus Seminar 2/8[J]. J Am Coll Cardiol, 2021, 77(22): 2822-2845. doi: 10.1016/j.jacc.2021.01.060
[4] Tanaka T, Miki K, Akahori H, et al. Comparison of coronary atherosclerotic disease burden between ST-elevation myocardial infarction and non-ST-elevation myocardial infarction: Non-culprit Gensini score and non-culprit SYNTAX score[J]. Clin Cardiol, 2021, 44(2): 238-243. doi: 10.1002/clc.23534
[5] Georgiopoulos G, Kraler S, Mueller-Hennessen M, et al. Modification of the GRACE Risk Score for Risk Prediction in Patients With Acute Coronary Syndromes[J]. JAMA Cardiol, 2023, 8(10): 946-956. doi: 10.1001/jamacardio.2023.2741
[6] Nabati M, Golshani S, Taghavi M, et al. The association between tissue doppler-derived E/(e's') ratio and coronary atherosclerosis severity measured by the SYNTAX score in patients with non-ST elevation-acute coronary syndrome[J]. BMC Cardiovasc Disord, 2023, 23(1): 98. doi: 10.1186/s12872-023-03128-8
[7] 陈文东, 黄静, 赵云波, 等. 左心房功能与射血分数保留型心力衰竭的研究进展[J]. 心脏杂志, 2022, 34(2): 228-231, 238.
[8] Katogiannis K, Makavos G, Tsilivarakis D, et al. Left Atrial Deformation in Heart Failure: A Clinical Update[J]. Curr Probl Cardiol, 2023, 48(8): 101183. doi: 10.1016/j.cpcardiol.2022.101183
[9] Agrawal V, Manouchehri A, Vaitinadin NS, et al. Identification of Clinical Drivers of Left Atrial Enlargement Through Genomics of Left Atrial Size[J]. Circ Heart Fail, 2024, 17(1): e010557.
[10] Pirruccello JP, Di Achille P, Choi SH, et al. Deep learning of left atrial structure and function provides link to atrial fibrillation risk[J]. Nat Commun, 2024, 15(1): 4304. doi: 10.1038/s41467-024-48229-w
[11] Lin J, Wu H, Zhang T. The correlation of left atrial diameter with preserved ejection fraction, reduced ejection fraction, and mid-range ejection fraction[J]. Clin Cardiol, 2023, 46(12): 1588-1593. doi: 10.1002/clc.24134
[12] Kebed KY, Addetia K, Lang RM. Importance of the Left Atrium: More Than a Bystander?[J]. Heart Fail Clin, 2019, 15(2): 191-204. doi: 10.1016/j.hfc.2018.12.001
[13] Ahmeti A, Bytyçi FS, Bielecka-Dabrowa A, et al. Prognostic value of left atrial volume index in acute coronary syndrome: A systematic review and meta-analysis[J]. Clin Physiol Funct Imaging, 2021, 41(2): 128-135. doi: 10.1111/cpf.12689
[14] Pinar M, Gulel O, Kucuksu Z, et al. Evaluation of biatrial size and functions by different echocardiographic parameters in patients with acute coronary syndromes[J]. Int J Cardiovasc Imaging, 2013, 29(8): 1725-1732. doi: 10.1007/s10554-013-0269-8
[15] Chen M, Li P, Huang Y, et al. Development and validation of a nomogram for predicting significant coronary artery stenosis in suspected non-ST-segment elevation acute coronary artery syndrome with low-to-intermediate risk stratification[J]. Front Cardiovasc Med, 2022, 9: 1013563. doi: 10.3389/fcvm.2022.1013563
[16] Gao F, Huo J, She J, et al. Different associations between left atrial size and 2.5-year clinical outcomes in patients with anterior versus non-anterior wall ST-elevation myocardial infarction[J]. J Int Med Res, 2020, 48(4): 300060520912073. doi: 10.1177/0300060520912073
[17] Lønborg JT, EngstRøm T, Møller JE, et al. Left atrial volume and function in patients following ST elevation myocardial infarction and the association with clinical outcome: a cardiovascular magnetic resonance study[J]. Eur Heart J Cardiovasc Imaging, 2013, 14(2): 118-127. doi: 10.1093/ehjci/jes118
[18] Selimović N, Marić A, Šljivo A, et al. Predictors for major adverse cardiovascular events among patients with acute coronary syndrome in Bosnia and Herzegovina[J]. Med Glas(Zenica), 2024, 21(2): 274-280.
[19] Sun ZY, Li Q, Li J, et al. Echocardiographic evaluation of the right atrial size and function: Relevance for clinical practice[J]. Am Heart J Plus, 2023, 27: 100274.
[20] Schuster A, Backhaus SJ, Stiermaier T, et al. Impact of Right Atrial Physiology on Heart Failure and Adverse Events after Myocardial Infarction[J]. J Clin Med, 2020, 9(1): 210. doi: 10.3390/jcm9010210
[21] Cicco S, Calvanese C, Susca N, et al. Right atrium enlargement is related to increased heart damage and mortality in well-controlled hypertension[J]. Nutr Metab Cardiovasc Dis, 2022, 32(2): 420-428. doi: 10.1016/j.numecd.2021.10.004
[22] Ben Halima M, Yaakoubi W, Boudiche S, et al. New-onset atrial fibrillation after acute coronary syndrome: prevalence and predictive factors[J]. Tunis Med, 2022, 100(2): 114-121.
[23] Wu N, Li J, Xu X, et al. Prediction Model of New Onset Atrial Fibrillation in Patients with Acute Coronary Syndrome[J]. Int J Clin Pract, 2023, 2023: 3473603.
[24] Ionac I, Lazǎr MA, Brie DM, et al. The Incremental Prognostic Value of E/(e'×s') Ratio in Non-ST-Segment Elevated Acute Coronary Syndrome[J]. Diagnostics(Basel), 2021, 11(8): 1337.
[25] Lassen MCH, Skaarup KG, Iversen AZ, et al. Ratio of Transmitral Early Filling Velocity to Early Diastolic Strain Rate as a Predictor of Cardiovascular Morbidity and Mortality Following Acute Coronary Syndrome[J]. Am J Cardiol, 2019, 123(11): 1776-1782. doi: 10.1016/j.amjcard.2019.03.004
[26] Miyake M, Izumi C, Watanabe H, et al. Prognostic value of E/e' ratio and its change over time in ST-segment elevation myocardial infarction with preserved left ventricular ejection fraction in the reperfusion era[J]. J Cardiol, 2024, 84(4): 253-259. doi: 10.1016/j.jjcc.2024.03.002
[27] Gc VS, Alshurafa M, Sturgess DJ, et al. Cost-minimisation analysis alongside a pilot study of early Tissue Doppler Evaluation of Diastolic Dysfunction in Emergency Department Non-ST Elevation Acute Coronary Syndromes(TEDDy-NSTEACS)[J]. BMJ Open, 2019, 9(5): e023920. doi: 10.1136/bmjopen-2018-023920
[28] Sunderji I, Singh V, Fraser AG. When does the E/e' index not work? The pitfalls of oversimplifying diastolic function[J]. Echocardiography, 2020, 37(11): 1897-1907. doi: 10.1111/echo.14697
[29] Mitter SS, Shah SJ, Thomas JD. A Test in Context: E/A and E/e' to Assess Diastolic Dysfunction and LV Filling Pressure[J]. J Am Coll Cardiol, 2017, 69(11): 1451-1464.
[30] Furtado RHM, Juliasz MG, Chiu FYJ, et al. Long-term mortality after acute coronary syndromes among patients with normal, mildly reduced, or reduced ejection fraction[J]. ESC Heart Fail, 2023, 10(1): 442-452. doi: 10.1002/ehf2.14201
[31] King M, Kingery J, Casey B. Diagnosis and evaluation of heart failure[J]. Am Fam Physician, 2012, 85(12): 1161-1168.
[32] Yahud E, Tzuman O, Fink N, et al. Trends in long-term prognosis according to left ventricular ejection fraction after acute coronary syndrome[J]. J Cardiol, 2020, 76(3): 303-308. doi: 10.1016/j.jjcc.2020.03.012
[33] Frantz S, Hundertmark MJ, Schulz-Menger J, et al. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies[J]. Eur Heart J, 2022, 43(27): 2549-2561. doi: 10.1093/eurheartj/ehac223
[34] Bahit MC, Lopes RD, Clare RM, et al. Heart failure complicating non-ST-segment elevation acute coronary syndrome: timing, predictors, and clinical outcomes[J]. JACC Heart Fail, 2013, 1(3): 223-239. doi: 10.1016/j.jchf.2013.02.007
[35] Peng X, Du J, Wang Y. Metabolic signatures in post-myocardial infarction heart failure, including insights into prediction, intervention, and prognosis[J]. Biomed Pharmacother, 2024, 170: 116079. doi: 10.1016/j.biopha.2023.116079
[36] Paiva L, Vieira MJ, Baptista R, et al. Unstable Angina: Risk Stratification for Significant Coronary Artery Disease in The Era of High-Sensitivity Cardiac Troponin[J]. Glob Heart, 2024, 19(1): 7. doi: 10.5334/gh.1286
-
计量
- 文章访问数: 188
- 施引文献: 0