脓毒症ICU获得性衰弱发病机制及诊疗研究进展

郭同武, 赵明锐, 冼丽娜, 等. 脓毒症ICU获得性衰弱发病机制及诊疗研究进展[J]. 临床急诊杂志, 2024, 25(6): 318-324. doi: 10.13201/j.issn.1009-5918.2024.06.009
引用本文: 郭同武, 赵明锐, 冼丽娜, 等. 脓毒症ICU获得性衰弱发病机制及诊疗研究进展[J]. 临床急诊杂志, 2024, 25(6): 318-324. doi: 10.13201/j.issn.1009-5918.2024.06.009
GUO Tongwu, ZHAO Mingrui, XIAN Lina, et al. Research advance in pathogenesis and diagnosis and treatment of sepsis ICU-AW[J]. J Clin Emerg, 2024, 25(6): 318-324. doi: 10.13201/j.issn.1009-5918.2024.06.009
Citation: GUO Tongwu, ZHAO Mingrui, XIAN Lina, et al. Research advance in pathogenesis and diagnosis and treatment of sepsis ICU-AW[J]. J Clin Emerg, 2024, 25(6): 318-324. doi: 10.13201/j.issn.1009-5918.2024.06.009

脓毒症ICU获得性衰弱发病机制及诊疗研究进展

  • 基金项目:
    海南省自然科学基金项目(No:822QN467);海南省卫生健康行业科研项目(No:21A200050)
详细信息

Research advance in pathogenesis and diagnosis and treatment of sepsis ICU-AW

More Information
  • ICU获得性衰弱(intensive care unit acquired weakness,ICU-AW)作为重症监护室脓毒症患者的常见并发症,多累及骨骼肌、呼吸肌及平滑肌等,会导致脱机困难、住院时间延长、医疗费用剧增,并严重影响患者远期生活质量。但脓毒症ICU-AW的发病机制尚不明确、诊断评估标准缺乏统一、治疗时机和方案选择仍无具体标准。鉴于该病发病机制和诊疗选择存在争议,本文结合国内外文献资料,对脓毒症患者ICU-AW的发病机制及诊疗措施相关研究进展进行综述,以期加深临床多学科对该病的认知并针对性提高疾病的早期认识、诊断及诊疗协作能力。
  • 加载中
  • 图 1  微循环障碍

    图 2  2012年美国重症协会集束治疗优化后ABCDEFGH策略

    表 1  各诊断评估技术对脓毒症ICU-AW的实施方式及优缺点

    技术 方式 优点 缺点
    患者无法配合
      超声技术[45-49] 评估目标肌肉质量、厚度和肌肉强度;观察运动过程中肌肉的收缩情况和力量变化;筛查肌肉坏死和筋膜炎 ①非侵入性床旁检测、安全便捷且方便动态测量,测量设备ICU内常见;②可与MRI和CT结果综合评估;③可早期筛查和预后判断 ①对肌无力的判断容易受评估者主观影响;②易受肥胖和水肿的影响;③不能直接测量评估肌肉力量变化;④对深层肌群的评估准确度不佳
      CT技术与MRI技术[46-47, 50-51] 评估脂肪组织有无浸润肌肉组织 ①非侵入性检测;②精确定位、可靠性高;③不受肥胖和水肿的影响;④可评估深层肌群 ①便捷性差,需转运患者;②对检测设备硬件及软件要求度高;③CT存在辐射暴露因素
      身体成分测定技术[47, 52-53] 双能X射线吸收测量法(脂肪、骨骼和肌肉);中子活化分析法(中子和原子);生物电阻抗测量法(躯体水分) 非侵入性检测 ①易受肥胖和水肿的影响(双能X射线吸收测量、生物电阻抗测量);②对检测设备要求度高(双能X射线吸收测量、中子活化分析);③辐射暴露(双能X射线吸收测量法、中子活化分析法)
      疾病预测模型[49, 54-55] 利用不同数据采用不同模型预测疾病风险因素 ①非侵入性检测;②适用于不同目标人群;③不同测评方式间的互补 ①内容较为烦琐;②部分未进行外部验证、结果可能存在偏倚;③需大样本、大数据进一步验证模型稳定性
      直接肌肉刺激与神经、肌肉活检技术[46, 56-57] 肉眼直接观察目标的肌肉兴奋性;镜下观察神经、肌肉组织有无萎缩、坏死、炎症、脂肪浸润、纤维化等 ①无须患者配合;②可用于鉴别诊断危重症多发肌病与危重症神经肌肉病变;③有利于发病机制的研究 ①活检技术为侵入性,有并发症风险;②对疾病本身预后无明显价值
      患者可部分配合
      神经传导检查与针状肌电图[45-46, 58] ≥两个神经SNAP振幅小于正常值80%;(无传导阻滞)≥两个神经CMAP振幅小于正常正常值80% ①可用于鉴别诊断危重症多发肌病;②适用于无法直接手动测试肌力患者 ①侵入性检查(肌电图);②需要患者部分合作(肌电图);③凝血功能障碍患者不适用
    患者清醒且配合,理解测评方式
      MRC六分级[59-60](60分):0级,未见肌肉收缩;1级,可见肌肉收缩,未见肢体运动;2级,可见肢体运动,无法抵抗重力;3级,仅可抵抗重力;4级,可抗阻力运动;5级,正常力量 需双侧对称测量肩外展、肘屈曲、腕伸曲、髋屈曲、膝伸展、足背曲显著虚弱,>48分严重无力,<36分 ①非侵入性床旁检测且安全便捷;②在遵循严格的标准化测试流程和位置指南前提下可靠性较高;③便于评估患者整体肌肉功能状态 ①受患者体位和肢体功能状态影响(如:疼痛、敷料、固定装置的限制);②对肌肉功能细微变化的区分敏感性较低,对临界值的判断易受评估者主观影响
      MRC四分级[60-61](36分):0级,完全瘫痪;1级,>50%力量丧失;2级,<50%力量丧失;3级,正常肌力 测量方式部位同上,肌无力<24分 同MRC六分级,但相比6级测量更为便捷 同MRC六分级
      手持式肌力测量仪[60, 62] 双侧对称测量肌无力:男<11 kg,女<7 kg ①非侵入性床旁检测且安全便捷;②金标准,客观性评价;③高灵敏度、特异度 ①若评估整体肌肉力量需借助其他装置;②应鉴别是否因其他原因引起的肌力下降;③肢体功能状态影响
      PFIT-s评分[63-65](每项0~3分) ICU功能状态评分(每项0~7分) 肩屈曲强度、膝伸展力量、每分钟踏频、坐立协助滚动躯体、翻身到坐起、坐立于床边、坐姿到站立、正常走动 ①非侵入性床旁检测且安全便捷;②评估患者的功能能力经过验证 ①存在高限、低限效应;②对临界值的判断容易受评估者主观影响
      六分钟步行实验[66-67] 步行6 min ①非侵入性床旁检测且安全便捷;②对部分疾病预后具有一定预测能力 仅适用于可行走患者
    注:CMAP,复合肌肉运动动作电位反应;SNAP,感觉神经动作电位;PFIT-s,重症监护身体功能测试评分。
    下载: 导出CSV
  • [1]

    Bolton C, Brown J, Sibbald W. The electrophysiologic investigation of respiratory paralysis in critically ill patients[J]. Neurology, 1983, 33(suppl 2): 186.

    [2]

    Bellaver P, Schaeffer AF, Leitao CB, et al. Association between neuromuscular blocking agents and the development of intensive care unit-acquired weakness(ICU-AW): A systematic review with meta-analysis and trial sequential analysis[J]. Anaesth Crit Care Pain Med, 2023, 42(3): 101202. doi: 10.1016/j.accpm.2023.101202

    [3]

    Bouglé A, Rocheteau P, Sharshar T, et al. Muscle regeneration after sepsis[J]. Crit Care, 2016, 20(1): 131. doi: 10.1186/s13054-016-1308-3

    [4]

    Van Aerde N, Meersseman P, Debaveye Y, et al. Five-year impact of ICU-acquired neuromuscular complications: a prospective, observational study[J]. Intensive Care Med, 2020, 46(6): 1184-1193. doi: 10.1007/s00134-020-05927-5

    [5]

    Vanhorebeek I, Latronico N, Van Den Berghe G. ICU-acquired weakness[J]. Intensive Care Med, 2020, 46(4): 637-653. doi: 10.1007/s00134-020-05944-4

    [6]

    Chen J, Huang M. Intensive care unit-acquired weakness: Recent insights[J]. J Intensive Med, 2024, 4(1): 73-80. doi: 10.1016/j.jointm.2023.07.002

    [7]

    唐宁健, 刘丹, 刘佳雨, 等. 严重创伤患者外周血Th1/Th2细胞平衡和细胞因子水平变化及对发生脓毒症的预测价值[J]. 中国急救医学, 2023, 43(7): 510-517. doi: 10.3969/j.issn.1002-1949.2023.07.002

    [8]

    Park EJ, Kim YM, Kim HJ, et al. Degradation of histone deacetylase 4 via the TLR4/JAK/STAT1 signaling pathway promotes the acetylation of high mobility group box 1(HMGB1) in lipopolysaccharide-activated macrophages[J]. FEBS Open Bio, 2018, 8(7): 1119-1126. doi: 10.1002/2211-5463.12456

    [9]

    Luan YY, Jia M, Zhang H, et al. The potential mechanism of extracellular high mobility group box-1 protein mediated p53 expression in immune dysfunction of T lymphocytes[J]. Oncotarget, 2017, 8(68): 112959-112971. doi: 10.18632/oncotarget.22913

    [10]

    Thoma A, Lightfoot AP. NF-κB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy[J]. Adv Exp Med Biol, 2018, 1088: 267-279.

    [11]

    向朝雪, 李福祥, 朱忠立, 等. NLRP3炎症小体在ICU获得性衰弱大鼠呼吸肌和下肢肌中的表达[J]. 中华肺部疾病杂志(电子版), 2020, 13(2): 198-203. doi: 10.3877/cma.j.issn.1674-6902.2020.02.014

    [12]

    Wang H, Yang Y, Zhang X, et al. Liensinine attenuates inflammation and oxidative stress in spleen tissue in an LPS-induced mouse sepsis model[J]. J Zhejiang Univ Sci B, 2023, 24(2): 185-190. doi: 10.1631/jzus.B2200340

    [13]

    Szentesi P, Csernoch L, Dux L, et al. Changes in Redox Signaling in the Skeletal Muscle with Aging[J]. Oxid Med Cell Longev, 2019, 2019: 4617801.

    [14]

    Swash M, De Carvalho M. Intensive Care Unit-Acquired Weakness: Neuropathology[J]. J Clin Neurophysiol, 2020, 37(3): 197-199. doi: 10.1097/WNP.0000000000000660

    [15]

    Klawitter F, Ehler J, Bajorat R, et al. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review[J]. Int J Mol Sci, 2023, 24(6): 5516. doi: 10.3390/ijms24065516

    [16]

    Singh A, Yadav A, Phogat J, et al. Dynamics and Interplay between Autophagy and Ubiquitin-proteasome system Coordination in Skeletal Muscle Atrophy[J]. Curr Mol Pharmacol, 2022, 15(3): 475-486. doi: 10.2174/1874467214666210806163851

    [17]

    李天梅, 刘力, 王晓斌. 脓毒症通过抑制AKT/GSK3β磷酸化导致骨骼肌细胞膜nAChRs聚集障碍[J]. 南方医科大学学报, 2019, 39(11): 1337-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJD201911012.htm

    [18]

    Liu L, Xie F, Wei K, et al. Sepsis induced denervation-like changes at the neuromuscular junction[J]. J Surg Res, 2016, 200(2): 523-532. doi: 10.1016/j.jss.2015.09.012

    [19]

    王小军. 炎症反应及细胞内钙浓度异常升高在脓毒症发展中的作用分析[J]. 中南医学科学杂志, 2020, 48(2): 209-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYY202002027.htm

    [20]

    Jaber S, Petrof B J, Jung B, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans[J]. Am J Respir Crit Care Med, 2011, 183(3): 364-371. doi: 10.1164/rccm.201004-0670OC

    [21]

    Latronico N, Bertolini G, Guarneri B, et al. Simplified electrophysiological evaluation of peripheral nerves in critically ill patients: the Italian multi-centre CRIMYNE study[J]. Crit Care, 2007, 11(1): R11. doi: 10.1186/cc5671

    [22]

    邱昱, 姜利, 席修明. 机械通气患者ICU获得性肌无力早期发病率及预后研究[J]. 中华危重病急救医学, 2019, 31(7): 821-826. doi: 10.3760/cma.j.issn.2095-4352.2019.07.005

    [23]

    Van Aerde N, Van Den Berghe G, Wilmer A, et al. Intensive care unit acquired muscle weakness in COVID-19 patients[J]. Intensive Care Med, 2020, 46(11): 2083-2085. doi: 10.1007/s00134-020-06244-7

    [24]

    Smuder AJ, Nelson WB, Hudson MB, et al. Inhibition of the ubiquitin-proteasome pathway does not protect against ventilator-induced accelerated proteolysis or atrophy in the diaphragm[J]. Anesthesiology, 2014, 121(1): 115-126. doi: 10.1097/ALN.0000000000000245

    [25]

    Azuelos I, Jung B, Picard M, et al. Relationship between Autophagy and Ventilator-induced Diaphragmatic Dysfunction[J]. Anesthesiology, 2015, 122(6): 1349-1361. doi: 10.1097/ALN.0000000000000656

    [26]

    Smuder AJ, Sollanek KJ, Min K, et al. Inhibition of forkhead boxO-specific transcription prevents mechanical ventilation-induced diaphragm dysfunction[J]. Crit Care Med, 2015, 43(5): e133-142. doi: 10.1097/CCM.0000000000000928

    [27]

    Agten A, Maes K, Thomas D, et al. Bortezomib partially protects the rat diaphragm from ventilator-induced diaphragm dysfunction[J]. Crit Care Med, 2012, 40(8): 2449-255. doi: 10.1097/CCM.0b013e3182553a88

    [28]

    Smuder AJ, Sollanek KJ, Nelson WB, et al. Crosstalk between autophagy and oxidative stress regulates proteolysis in the diaphragm during mechanical ventilation[J]. Free Radic Biol Med, 2018, 115: 179-190. doi: 10.1016/j.freeradbiomed.2017.11.025

    [29]

    高志伟, 刘玲, 谢剑锋, 等. 急性呼吸窘迫综合征机械通气患者人机不同步的研究进展[J]. 中华医学杂志, 2015, 95(26): 2126-2128. doi: 10.3760/cma.j.issn.0376-2491.2015.26.022

    [30]

    李金徽, 缪红军. 急性呼吸窘迫综合征患者以驱动压为导向的机械通气策略研究进展[J]. 中国小儿急救医学, 2020, 27(10): 758-761. doi: 10.3760/cma.j.issn.1673-4912.2020.10.010

    [31]

    张倩, 周静, 朱冬梅, 等. 镇痛镇静对延长机械通气患者膈肌萎缩的影响[J]. 南京医科大学学报(自然科学版), 2021, 41(2): 244-247. https://www.cnki.com.cn/Article/CJFDTOTAL-NJYK202102018.htm

    [32]

    Li SP, Zhou XL, Zhao Y. Sedation with midazolam worsens the diaphragm function than dexmedetomidine and propofol during mechanical ventilation in rats[J]. Biomed Pharmacother, 2020, 121: 109405. doi: 10.1016/j.biopha.2019.109405

    [33]

    Preiser JC, Van Zanten AR, Berger MM, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies[J]. Crit Care, 2015, 19(1): 35. doi: 10.1186/s13054-015-0737-8

    [34]

    Preiser JC. High protein intake during the early phase of critical illness: yes or no?[J]. Crit Care, 2018, 22(1): 261. doi: 10.1186/s13054-018-2196-5

    [35]

    李治丰. 脓毒症患者ICU获得性肌无力相关影响因素分析[J]. 青岛医药卫生, 2021, 53(2): 121-123. https://www.cnki.com.cn/Article/CJFDTOTAL-QDYW202102012.htm

    [36]

    Nunes EA, Colenso-Semple L, Mckellar SR, et al. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults[J]. J Cachexia Sarcopenia Muscle, 2022, 13(2): 795-810. doi: 10.1002/jcsm.12922

    [37]

    王宁, 丁显飞, 崔玉青, 等. 甲磺酸加贝酯改善脓毒症急性肺损伤大鼠的代谢组学研究[J]. 中华急诊医学杂志, 2022, 31(2): 6.

    [38]

    Cervantes-Barragan L, Chai JN, Tianero MD, et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8α(+)T cells[J]. Science, 2017, 357(6353): 806-810. doi: 10.1126/science.aah5825

    [39]

    Krishnan S, Ding Y, Saedi N, et al. Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages[J]. Cell Rep, 2018, 23(4): 1099-111. doi: 10.1016/j.celrep.2018.03.109

    [40]

    Mankowski RT, Laitano O, Darden D, et al. Sepsis-Induced Myopathy and Gut Microbiome Dysbiosis: Mechanistic Links and Therapeutic Targets[J]. Shock, 2022, 57(1): 15-23. doi: 10.1097/SHK.0000000000001843

    [41]

    Liu Y, Xu L, Yang Z, et al. Gut-muscle axis and sepsis-induced myopathy: The potential role of gut microbiota[J]. Biomed Pharmacother, 2023, 163: 114837. doi: 10.1016/j.biopha.2023.114837

    [42]

    Pun BT, Balas MC, Barnes-Daly MA, et al. Caring for Critically Ill Patients with the ABCDEF Bundle: Results of the ICU Liberation Collaborative in Over 15, 000 Adults[J]. Crit Care Med, 2019, 47(1): 3-14.

    [43]

    Benoussaad M, Rotella F, Chaibi I. Flatness of musculoskeletal systems under functional electrical stimulation[J]. Med Biol Eng Comput, 2020, 58(5): 1113-1126. doi: 10.1007/s11517-020-02139-3

    [44]

    Park T, Lee M, Jeong T, et al. Quantitative Analysis of EEG Power Spectrum and EMG Median Power Frequency Changes after Continuous Passive Motion Mirror Therapy System[J]. Sensors(Basel), 2020, 20(8): 2354.

    [45]

    Kelmenson DA, Quan D, Moss M. What is the diagnostic accuracy of single nerve conduction studies and muscle ultrasound to identify critical illness polyneuromyopathy: a prospective cohort study[J]. Crit Care, 2018, 22(1): 342.

    [46]

    Formenti P, Umbrello M, Coppola S, et al. Clinical review: peripheral muscular ultrasound in the ICU[J]. Ann Intensive Care, 2019, 9(1): 57.

    [47]

    Joskova V, Patkova A, Havel E, et al. Critical evaluation of muscle mass loss as a prognostic marker of morbidity in critically ill patients and methods for its determination[J]. J Rehabil Med, 2018, 50(8): 696-704.

    [48]

    Fisse AL, May C, Motte J, et al. New Approaches to Critical Illness Polyneuromyopathy: High-Resolution Neuromuscular Ultrasound Characteristics and Cytokine Profiling[J]. Neurocrit Care, 2021, 35(1): 139-152.

    [49]

    Hernández-Socorro CR, Saavedra P, López-Fernández JC, et al. Assessment of Muscle Wasting in Long-Stay ICU Patients Using a New Ultrasound Protocol[J]. Nutrients, 2018, 10(12): 1849.

    [50]

    Rehmann R, Enax-Krumova E, Meyer-Frießem CH, et al. Quantitative muscle MRI displays clinically relevant myostructural abnormalities in long-term ICU-survivors: a case-control study[J]. BMC Med Imaging, 2023, 23(1): 38.

    [51]

    Albano D, Messina C, Vitale J, et al. Imaging of sarcopenia: old evidence and new insights[J]. Eur Radiol, 2020, 30(4): 2199-2208.

    [52]

    Messina C, Albano D, Gitto S, et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools[J]. Quant Imaging Med Surg, 2020, 10(8): 1687-1698.

    [53]

    Ko SJ, Cho J, Choi SM, et al. Phase Angle and Frailty Are Important Prognostic Factors in Critically Ill Medical Patients: A Prospective Cohort Study[J]. J Nutr Health Aging, 2021, 25(2): 218-223.

    [54]

    钟富秀. 体外循环术后患者ICU获得性衰弱现况调查及列线图的构建[D]. 福州: 福建医科大学, 2022.

    [55]

    Yang Z, Wang X, Chang G, et al. Development and validation of an intensive care unit acquired weakness prediction model: A cohort study[J]. Front Med(Lausanne), 2023, 10: 1122936.

    [56]

    Friedrich O, Reid MB, Van Den Berghe G, et al. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill[J]. Physiol Rev, 2015, 95(3): 1025-1109.

    [57]

    戴廷军. 肌肉活检技术在神经肌肉疾病诊断中的应用[J]. 重庆医科大学学报, 2021, 46(7): 786-788. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYK202107014.htm

    [58]

    Juel VC. Clinical neurophysiology of neuromuscular junction disease[J]. Handb Clin Neurol, 2019, 161: 291-303.

    [59]

    Larson ST, Wilbur J. Muscle Weakness in Adults: Evaluation and Differential Diagnosis[J]. Am Fam Physician, 2020, 101(2): 95-108.

    [60]

    Parry SM, Berney S, Granger CL, et al. A new two-tier strength assessment approach to the diagnosis of weakness in intensive care: an observational study[J]. Crit Care, 2015, 19(1): 52.

    [61]

    Vanhoutte EK, Faber CG, Van Nes SI, et al. Modifying the Medical Research Council grading system through Rasch analyses[J]. Brain, 2012, 135(Pt 5): 1639-1649.

    [62]

    Muscular weakness assessment: use of normal isometric strength data. The National Isometric Muscle Strength(NIMS)Database Consortium[J]. Arch Phys Med Rehabil, 1996, 77(12): 1251-1255.

    [63]

    Parry SM, Baldwin CE. Clinimetrics: The Physical Function in ICU test-scored[J]. J Physiother, 2022, 68(1): 73.

    [64]

    Garcia D, De Sousa Neto IV, De Souza Monteiro Y, et al. Reliability and Validity of a Portable Traction Dynamometer in Knee-Strength Extension Tests: An Isometric Strength Assessment in Recreationally Active Men[J]. Healthcare(Basel), 2023, 11(10): 1466.

    [65]

    Dos Santos JSF, Silva GAG, Lima N, et al. Linking Intensive Care Unit functional scales to the International Classification of Functioning: proposal of a new assessment approach[J]. BMC Health Serv Res, 2023, 23(1): 871.

    [66]

    Chan KS, Pfoh ER, Denehy L, et al. Construct validity and minimal important difference of 6-minute walk distance in survivors of acute respiratory failure[J]. Chest, 2015, 147(5): 1316-1326.

    [67]

    Parry SM, Nalamalapu SR, Nunna K, et al. Six-Minute Walk Distance After Critical Illness: A Systematic Review and Meta-Analysis[J]. J Intensive Care Med, 2021, 36(3): 343-351.

  • 加载中
WeChat 点击查看大图
计量
  • 文章访问数:  83
  • 施引文献:  0
出版历程
收稿日期:  2024-02-27
刊出日期:  2024-06-10

返回顶部

目录