床旁超声评估成年危重症患者血容量状态之应用研究新进展

何罗宜, 陆庆元, 刘品晶, 等. 床旁超声评估成年危重症患者血容量状态之应用研究新进展[J]. 临床急诊杂志, 2022, 23(9): 677-683. doi: 10.13201/j.issn.1009-5918.2022.09.014
引用本文: 何罗宜, 陆庆元, 刘品晶, 等. 床旁超声评估成年危重症患者血容量状态之应用研究新进展[J]. 临床急诊杂志, 2022, 23(9): 677-683. doi: 10.13201/j.issn.1009-5918.2022.09.014
HE Luoyi, LU Qingyuan, LIU Pinjing, et al. Progress of ultrasound in volume stadus assessment of critically ill patients[J]. J Clin Emerg, 2022, 23(9): 677-683. doi: 10.13201/j.issn.1009-5918.2022.09.014
Citation: HE Luoyi, LU Qingyuan, LIU Pinjing, et al. Progress of ultrasound in volume stadus assessment of critically ill patients[J]. J Clin Emerg, 2022, 23(9): 677-683. doi: 10.13201/j.issn.1009-5918.2022.09.014

床旁超声评估成年危重症患者血容量状态之应用研究新进展

详细信息
    通讯作者: 何罗宜,E-mail:63806724@qq.com
  • 中图分类号: R445.1

Progress of ultrasound in volume stadus assessment of critically ill patients

More Information
  • 急危重症患者常存在血流动力学不稳定,需精细液体管理。床旁超声检查具有准确、及时、迅速等诸多优势,可随病情变化反复检查及评估。随着床旁超声的临床深度应用及其深入研究,目前相关研究发现下腔静脉直径大小可反映机体血容量状态,自主呼吸状态下,下腔静脉塌陷指数>50%提示具有容量反应性,机械通气下,下腔静脉扩张指数>26%提示有容量反应性。妊娠妇女结果则略有不同,妊娠妇女左侧卧位下腔静脉塌陷指数>25.64%提示血容量不足。食管超声下观察上腔静脉塌陷指数>37%提示有容量反应性。床旁超声可全方位监测及评估血容量状态,可及时、有效地指导急危重症患者液体管理。
  • 加载中
  • 表 1  自主呼吸下各研究之IVC-CI评估容量反应性灵敏度及特异度

    作者 年限 国家 例数 IVC-CI/% AUROC 灵敏度/% 特异度/%
    李年炜等[10] 2019 中国 40 42.9 0.921 86.7 86.0
    Ni等[11] 2022 中国 91 45.0 0.834 83.9 76.3
    Bortolotti等[12] 2018 法国 55 37.0 0.820 86.0 78.0
    Marcell等[13] 2019 匈牙利 102 50.0 0.648 45.5 90.0
    Caplan等[14] 2020 法国 30 25.0 0.464 47.0 64.0
    Blavius等[15] 2021 美国 20 25.0 0.940 89.0 100.0
    McGregor等[16] 2020 英国 175 25.0 0.820 85.0 79.0
    Corl等[17] 2019 美国 124 25.0 0.840 87.0 81.0
    Preau等[18] 2017 法国 90 31.0 0.820 76.0 88.0
    Corl等[19] 2017 美国 124 46.0 0.850 67.0 93.0
    Haliloglu等[20] 2017 土耳其 44 35.0 0.825 78.0 86.0
    Airapetian等[21] 2015 法国 59 49.0 0.620 31.0 97.0
    De Valk等[22] 2014 新西兰 45 36.5 0.741 83.0 67.0
    下载: 导出CSV

    表 2  机械通气下各研究之dIVC评估容量反应性灵敏度及特异度值

    作者 年限 国家 潮气量 例数 dIVC/% AUROC 灵敏度/% 特异度/%
    Kaur等[26] 2021 印度 >8 mL/kg 67 17.86 0.80 72.70 95.00
    Yao等[27] 2019 中国 7.5 mL/kg 67 25.60 0.702 46.00 90.00
    He等[28] 2019 中国 6 mL/kg 79 11.10 0.710 68.00 76.00
    9 mL/kg 79 15.30 0.790 55.00 88.00
    12 mL/kg 79 16.00 0.730 88.00 73.0
    Sarıtaş等[29] 2019 土耳其 6~8 mL/kg,PEEP 5 cmH2O 100 12.00 0.835 98.00 68.00
    Upadhyay等[30] 2020 印度 < 8 mL/kg 30 25.00 0.660 54.00 86.70
    Ma等[31] 2018 中国 >8 mL/kg 50 13.39 0.80 85.71 85.71
    Wang等[32] 2018 中国 8~12 mL/kg 67 25.60 0.702 46.00 90.00
    Piskin等[33] 2017 土耳其 8 mL/kg 72 23.00 0.928 80.00 88.00
    Lu等[34] 2017 中国 8~10 mL/kg 49 20.00 0.805 67.00 77.00
    Theerawit等[35] 2016 泰国 >8 mL/kg,PEEP 8~10 cmH2O 29 18.00 0.688 75.00 77.00
    Sobczk等[36] 2016 波兰 8 mL/kg,PEEP 4.5 cmH2O 35 18.00 0.739 83.00 73.00
    De Oliveira等[37] 2016 巴西 >8 mL/kg 20 16.00 0.43 38.00 61.00
    Charboneau等[38] 2014 法国 >8 mL/kg 44 21.00 0.43 38.00 61.00
    Machare-Delgado等[39] 2011 美国 8 mL/kg,EEP(6.8±2.8)cmH2O 25 12.00 0.816 100.00 53.00
    Moretti等[40] 2010 意大利 8 mL/kg PEEP 5 cmH2O 29 16.00 0.902 71.00 100.00
    注:1 cmH2O=0.098 kPa。
    下载: 导出CSV
  • [1]

    王小亭, 刘大为, 于凯江, 等. 中国重症超声专家共识[J]. 中华内科杂志, 2016, 55(11): 900-912. doi: 10.3760/cma.j.issn.0578-1426.2016.11.020

    [2]

    Arican Ş, Dertli R, Daǧli Ç, et al. The role of right ventricular volumes and inferior vena cava diameters in the evaluation of volume status before colonoscopy[J]. Turk J Med Sci, 2019, 49(6): 1606-1613.

    [3]

    Caplan M, Durand A, Bortolotti P, et al. Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: a post hoc analysis of two prospective cohorts[J]. Ann Intensive Care, 2020, 10(1): 168. doi: 10.1186/s13613-020-00786-1

    [4]

    Preau S, Bortolotti P, Colling D, et al. Diagnostic Accuracy of the Inferior Vena Cava Collapsibility to Predict Fluid Responsiveness in Spontaneously Breathing Patients With Sepsis and Acute Circulatory Failure[J]. Crit Care Med, 2017, 45(3): e290-e297. doi: 10.1097/CCM.0000000000002090

    [5]

    Bortolotti P, Colling D, Colas V, et al. Respiratory changes of the inferior vena cava diameter predict fluid responsiveness in spontaneously breathing patients with cardiac arrhythmias[J]. Ann Intensive Care, 2018, 8(1): 79. doi: 10.1186/s13613-018-0427-1

    [6]

    Orso D, Guglielmo N, Federici N, etal. Accuracy of the caval index and the expiratory diameter of the inferiorvena cava for the diagnosis of dehydrationinelderly[J]. J Ultrasound, 2016, 19: 203-209. doi: 10.1007/s40477-016-0200-y

    [7]

    Diederich H, Burkhardt H. Diagnostic efficacy of bedside ultrasound to detect dehydration in older patients attending an emergency care unit[J]. Z Gerontol Geriatr, 2021, 54(2): 130-135. doi: 10.1007/s00391-020-01711-8

    [8]

    Orso D, Paoli I, Piani T, et al. Accuracy of Ultrasonographic Measurements of Inferior Vena Cava to Determine Fluid Responsiveness: A Systematic Review and Meta-Analysis[J]. J Intensive Care Med, 2020, 35(4): 354-363. doi: 10.1177/0885066617752308

    [9]

    Kim DW, Chung S, Kang WS, et al. Diagnostic Accuracy of Ultrasonographic Respiratory Variation in the Inferior Vena Cava, Subclavian Vein, Internal Jugular Vein, and Femoral Vein Diameter to Predict Fluid Responsiveness: A Systematic Review and Meta-Analysis[J]. Diagnostics(Basel), 2021, 12(1): 49. .

    [10]

    李尧炜, 李晓峰, 梁彦平, 等. 下腔静脉呼吸变异指数预测自主呼吸患者容量反应性研究[J]. 中华灾害救援医学, 2020, 8(4): 181-184. https://www.cnki.com.cn/Article/CJFDTOTAL-JYZH202004002.htm

    [11]

    Ni TT, Zhou ZF, He B, et al. Inferior Vena Cava Collapsibility Index Can Predict Hypotension and Guide Fluid Management After Spinal Anesthesia[J]. Front Surg, 2022, 9: 831539. doi: 10.3389/fsurg.2022.831539

    [12]

    Bortolotti P, Colling D, Colas V, et al. Respiratory changes of the inferior vena cava diameter predict fluid responsiveness in spontaneously breathing patients with cardiac arrhythmias[J]. Ann Intensive Care, 2018, 8(1): 79. doi: 10.1186/s13613-018-0427-1

    [13]

    Szabó M, Bozó A, Darvas K, et al. Role of inferior vena cava collapsibility index in the prediction of hypotension associated with general anesthesia: an observational study[J]. BMC Anesthesiol, 2019, 19(1): 139. doi: 10.1186/s12871-019-0809-4

    [14]

    Caplan M, Durand A, Bortolotti P, et al. Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: a post hoc analysis of two prospective cohorts[J]. Ann Intensive Care, 2020, 10(1): 168. doi: 10.1186/s13613-020-00786-1

    [15]

    Blaivas M, Blaivas L, Philips G, et al. Development of a deep learning network to classify inferior vena cava collapse to predict fluid responsiveness[J]. J Ultrasound Med Off J Am Inst Ultrasound Med, 2021, 40: 1495-1504.

    [16]

    McGregor D, Sharma S, Gupta S, et al. Emergency department non-invasive cardiac output study (EDNICO): An accuracy study[J]. Scand J Trauma Resusc Emerg Med, 2020, 28: 8. doi: 10.1186/s13049-020-0704-5

    [17]

    Corl KA, Azab N, Nayeemuddin M, et al. Performance of a 25% inferior vena cava collapsibility in detecting fluid responsiveness when assessed by novice versus expert physician sonologists[J]. J Intensive Care Med, 2020, 35: 1520-1528. doi: 10.1177/0885066619881123

    [18]

    Preau S, Bortolotti P, CollingD, et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure[J]. Crit Care Med, 2017, 45: e290-e297. doi: 10.1097/CCM.0000000000002090

    [19]

    Corl KA, George NR, Romanoff J, et al. Inferior vena cava collapsibility detects fluid responsiveness among spontaneously breathing critically-ill patients[J]. J Crit Care, 2017;41: 130-137. doi: 10.1016/j.jcrc.2017.05.008

    [20]

    Haliloǧlu M, Bilgili B, Kararmaz, et al. Ulusal travma veacil cerrahi dergisi[J]. Turk J Trauma Emerg Surg, 2017, 23: 294-300.

    [21]

    Airapetian N, Maizel J, Alyamani O, et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients[J]?Crit Care, 2015, 19, 400. doi: 10.1186/s13054-015-1100-9

    [22]

    De Valk S, Olgers TJ, Holman M, et al. The caval index: An adequate non-invasive ultrasound parameter to predict fluid responsiveness in the emergency department[J]?BMC Anesthesiol, 2014, 14: 114. doi: 10.1186/1471-2253-14-114

    [23]

    高山, 张永. 床边下腔静脉超声指标及中心静脉压对脓毒性休克患者容量反应性的预测价值[J]. 中华全科医学, 2021, 19(4): 581-585. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQY202104015.htm

    [24]

    Taccheri T, Gavelli F, Teboul JL, et al. Do changes in pulse pressure variation and inferior vena cava distensibility during passive leg raising and tidal volume challenge detect preload responsiveness in case of low tidal volume ventilation?[J]. Crit Care, 2021, 25(1): 110. doi: 10.1186/s13054-021-03515-7

    [25]

    Ma GG, Hao GW, Yang XM, et al. Internal jugular vein variability predicts fluid responsiveness in cardiac surgical patients with mechanical ventilation[J]. Ann Intensive Care, 2018, 8(1): 6. doi: 10.1186/s13613-017-0347-5

    [26]

    Kaur KB, Nakra M, Mangal V, et al. Comparative evaluation of stroke volume variation and inferior vena cava distensibility index for prediction of fluid responsiveness in mechanically ventilated patients[J]. Ann Card Anaesth, 2021, 24(3): 327-332.

    [27]

    Yao B, Liu JY, Sun YB, et al. The Value of the Inferior Vena Cava Area Distensibility Index and its Diameter Ratio for Predicting Fluid Responsiveness in Mechanically Ventilated Patients[J]. Shock, 2019, 52(1): 37-42. doi: 10.1097/SHK.0000000000001238

    [28]

    He F, Li X, Thapa S, et al. Evaluation of volume responsiveness by pulse pressure variability and inferior vena cava dispensability index at different tidal volumes by mechanical ventilation[J]. Braz J Med Biol Res, 2019, 52(9): e8827. doi: 10.1590/1414-431x20198827

    [29]

    Sarıtaş A, Zincircioǧlu Ç, Uzun Sarıtaş P, et al. Comparison of inferior vena cava collapsibility, distensibility, and delta indices at different positive pressure supports and prediction values of indices for intravascular volume status[J]. Turk J Med Sci, 2019, 49(4): 1170-1178. doi: 10.3906/sag-1810-52

    [30]

    Upadhyay V, Malviya D, Nath SS, et al. Comparison of Superior Vena Cava and Inferior Vena Cava Diameter Changes by Echocardiography in Predicting Fluid Responsiveness in Mechanically Ventilated Patients[J]. Anesth Essays Res, 2020, 14(3): 441-447. doi: 10.4103/aer.AER_1_21

    [31]

    Ma GG, Hao GW, Yang XM, et al. Internal jugular vein variability predicts fluid responsiveness in cardiac surgical patients with mechanical ventilation[J]. Ann. Intensive Care, 2018, 8: 6. doi: 10.1186/s13613-017-0347-5

    [32]

    Wang Y, Jiang Y, Wu H, et al. Assessment of fluid responsiveness by inferior vena cava diameter variation in post-pneumonectomy patients[J]. Echocardiography, 2018, 35, 1922-1925. doi: 10.1111/echo.14172

    [33]

    Piskin Ö, Öz Ⅱ. Accuracy of pleth variability index compared with inferior vena cava diameter to predict fluid responsiveness in mechanically ventilated patients[J]. Medicine(Baltimore), 2017, 96(47): e8889.

    [34]

    Lu N, Xi X, Jiang L, et al. Exploring the best predictors of fluid responsiveness in patients with septic shock[J]. Am J Emerg Med, 2017, 35: 1258-1261. doi: 10.1016/j.ajem.2017.03.052

    [35]

    Theerawit P, Morasert T, Sutherasan Y. Inferior vena cava diameter variation compared with pulse pressure variation as predictors of fluid responsiveness in patients with sepsis[J]. J Crit Care, 2016, 36: 246-251. doi: 10.1016/j.jcrc.2016.07.023

    [36]

    Sobczyk D, Nycz K, Andruszkiewicz P, et al. Ultrasonographic caval indices do not significantly contribute to predicting fluid responsiveness immediately after coronary artery bypass grafting when compared to passive leg raising. Cardiovasc[J]. Ultrasound, 2016, 14: 23.

    [37]

    De Oliveira OH, Freitas FG, Ladeira RT, et al. Comparison between respiratory changes in the inferior vena cava diameter and pulse pressure variation to predict fluid responsiveness in postoperative patients[J]. J Crit Care, 2016, 34: 46-49. doi: 10.1016/j.jcrc.2016.03.017

    [38]

    Charbonneau H, Riu B, Faron M, et al. Predicting preload responsiveness using simultaneous recordings of inferior and superior vena cavae diameters[J]. Crit Care, 2014, 18: 473. doi: 10.1186/s13054-014-0473-5

    [39]

    Machare-Delgado E, Decaro M, Marik PE. Inferior vena cava variation compared to pulse contour analysis as predictors of fluid responsiveness: A prospective cohort study[J]. Intensive Care Med, 2011, 26: 116-124. doi: 10.1177/0885066610384192

    [40]

    Moretti R, Pizzi B. Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage[J]. Neurocrit, Care 2010, 13: 3-9. doi: 10.1007/s12028-010-9356-z

    [41]

    Perrine B, Delpline C, Vincent C, et al. Respiratory changes of the inferior vena cava diameter predict fluid responsiveness in spontaneously breating patients with cardiac arrhythmias[J]. Ann Intnsive Care, 2018, 8(1): 79-91. doi: 10.1186/s13613-018-0427-1

    [42]

    Rory J, Michael T, McCurdy M. Inferior vena cava diameter predict fluid responsiveness rhythmias: a rational rearrangement of chaure on The Titanic[J]. Ann Transl Med, 2018, 6(1): 67-71.

    [43]

    No authors listed. Pre-operative ultrasonographic evaluation of inferior vena cava collapsibility index and caval aorta index as new predictors for hypotension after induction of spinal anaesthesia: A prospective observational study: erratum[J]. Eur J Anaesthesiol, 2019, 36(11): 888. doi: 10.1097/EJA.0000000000001094

    [44]

    Bilgin S, Topal FE, Yamano lu A, et al. Effect of Changes in Intravascular Volume on Inferior Vena Cava and Aorta Diameters and the Caval/Aorta Index in Healthy Volunteers[J]. J Ultrasound Med, 2020, 39(2): 231-238. doi: 10.1002/jum.15093

    [45]

    Kusumastuti NP, Latief A, Pudjiadi AH. Inferior Vena Cava/Abdominal Aorta Ratio as a Guide for Fluid Resuscitation[J]. J Emerg Trauma Shock, 2021, 14(4): 211-215.

    [46]

    Huang HB, Xu B, Liu GY, et al. N-terminal pro-B-type natriuretic peptide for predicting fluid challenge in patients with septic shock[J]. Ann Transl Med, 2019, 7(12): 264. doi: 10.21037/atm.2019.05.60

    [47]

    Wang Y, Cao X, Yu J, et al. Association of N-Terminal Pro-brain Natriuretic Peptide With Volume Status and Cardiac Function in Hemodialysis Patients[J]. Front Cardiovasc Med, 2021, 8: 646402. doi: 10.3389/fcvm.2021.646402

    [48]

    Oba T, Koyano M, Hasegawa J, et al. The inferior vena cava diameter is a useful ultrasound finding for predicting postpartum blood loss[J]. J Matern Fetal Neonatal Med, 2019, 32(19): 3251-3254. doi: 10.1080/14767058.2018.1462321

    [49]

    Singh Y, Anand RK, Gupta S, et al. Role of IVC collapsibility index to predict post spinal hypotension in pregnant women undergoing caesarean section. An observational trial[J]. Saudi J Anaesth, 2019, 13(4): 312-317. doi: 10.4103/sja.SJA_27_19

    [50]

    Elbadry AA, El Dabe A, Abu Sabaa MA. Pre-operative Ultrasonographic Evaluation of the Internal Jugular Vein Collapsibility Index and Inferior Vena Cava Collapsibility Index to Predict Post Spinal Hypotension in Pregnant Women Undergoing Caesarean Section[J]. Anesth Pain Med, 2022, 12(1): e121648.

    [51]

    中国重症超声研究组, 尹万红, 王小亭, 等. 中国重症经食管超声临床应用专家共识(2019)[J]. 中华内科杂志, 2019, 58(12): 869-882. doi: 10.3760/cma.j.issn.0578-1426.2019.12.002

    [52]

    Vignon P, Merz TM, Vieillard-Baron A. Ten reasons for performing hemodynamic monitoring using transesophageal echocardiography[J]. Intensive Care Med, 2017, 43(7): 1048-1051. doi: 10.1007/s00134-017-4716-1

    [53]

    Bubenek-Turconi ŞI, Hendy A, Bǎilǎ S, et al. The value of a superior vena cava collapsibility index measured with a miniaturized transoesophageal monoplane continuous echocardiography probe to predict fluid responsiveness compared to stroke volume variations in open major vascular surgery: a prospective cohort study[J]. J Clin Monit Comput, 2020, 34(3): 491-499. doi: 10.1007/s10877-019-00346-4

    [54]

    Cheng Z, Yang QQ, Zhu P, et al. Transesophageal Echocardiographic Measurements of the Superior Vena Cava for Predicting Fluid Responsiveness in Patients Undergoing Invasive Positive Pressure Ventilation[J]. J Ultrasound Med, 2019, 38(6): 1519-1525. doi: 10.1002/jum.14839

    [55]

    Upadhyay V, Malviya D, Nath SS, et al. Comparison of Superior Vena Cava and Inferior Vena Cava Diameter Changes by Echocardiography in Predicting Fluid Responsiveness in Mechanically Ventilated Patients[J]. Anesth Essays Res, 2020, 14(3): 441-447. doi: 10.4103/aer.AER_1_21

    [56]

    Kaptein YE, Kaptein EM. Comparison of subclavian vein to inferior vena cava collapsibility by ultrasound in acute heart failure: A pilot study[J]. Clin Cardiol, 2022, 45(1): 51-59. doi: 10.1002/clc.23758

    [57]

    Njoroge JN, Teerlink JR. Pathophysiology and Therapeutic Approaches to Acute Decompensated Heart Failure[J]. Circ Res, 2021, 128(10): 1468-1486. doi: 10.1161/CIRCRESAHA.121.318186

    [58]

    Farahmand S, Abdolhoseini A, Aliniagerdroudbari E, et al. Point-of-care ultrasound modalities in terms of diagnosing acute decompensated heart failure in emergency department; a diagnostic accuracy study[J]. Intern Emerg Med, 2020, 15(3): 491-499. doi: 10.1007/s11739-019-02233-x

    [59]

    张智玺, 韩雪, 何春来, 等. 下腔静脉塌陷指数与血浆NT-proBNP评价急性失代偿心力衰竭容量反应的价值[J]. 临床急诊杂志, 2018, 19(11): 754-757. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC201811007.htm

    [60]

    王春超, 唐文斌, 徐志新, 等. 脓毒性休克诱导心脏舒张功能障碍液体反应性的研究[J]. 临床急诊杂志, 2019, 20(6): 461-465. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC201906009.htm

    [61]

    Gavaud A, Nguyen LS, Caubel A, et al. Respiratory Variability of Pulmonary Velocity-Time Integral As a New Gauge of Fluid Responsiveness For Mechanically Ventilated Patients in the ICU[J]. Crit Care Med, 2019, 47(4): e310-e316. doi: 10.1097/CCM.0000000000003642

    [62]

    Kumar A, Mahendran M, Hari S, et al. Subclavian vein collapsibility as a predictor of fluid responsiveness in spontaneously breathing hypotensive patients[J]. J Assoc Physicians India, 2022, 70(4): 11-12.

    [63]

    Güney Pınar S, Pekdemir M, Özturan IU, et al. Assessment of end-tidal carbon dioxide and vena cava collapsibility in volume responsiveness in spontaneously breathing patients[J]. Med Klin Intensivmed Notfmed, 2022, 117(1): 34-40. doi: 10.1007/s00063-020-00749-1

    [64]

    Parenti N, Bastiani L, Tripolino C, et al. Ultrasound imaging and central venous pressure in spontaneously breathing patients: a comparison of ultrasound-based measures of internal jugular vein and inferior vena cava[J]. Anaesthesiol Intensive Ther, 2022, 54(2): 150-155. doi: 10.5114/ait.2022.114469

    [65]

    Zhang H, Zhang Q, Chen X, et al. Respiratory variations of inferior vena cava fail to predict fluid responsiveness in mechanically ventilated patients with isolated left ventricular dysfunction[J]. Ann Intensive Care, 2019, 9(1): 113. doi: 10.1186/s13613-019-0589-5

    [66]

    Via G, Tavazzi G, Price S. Ten situations where inferior vena cava ultrasound may fail to accurately predict fluid responsiveness: a physiologically based point of view[J]. Intensive Care Med, 2016, 42(7): 1164-1167. doi: 10.1007/s00134-016-4357-9

    [67]

    Preau S, Bortolotti P, Colling D, et al. Diagnostic Accuracy of the Inferior Vena Cava Collapsibility to Predict Fluid Responsiveness in Spontaneously Breathing Patients With Sepsis and Acute Circulatory Failure[J]. Crit Care Med, 2017, 45(3): e290-e297. doi: 10.1097/CCM.0000000000002090

  • 加载中
计量
  • 文章访问数:  999
  • PDF下载数:  351
  • 施引文献:  0
出版历程
收稿日期:  2022-06-10
刊出日期:  2022-09-10

目录