脓毒症早期识别的研究进展

唐瑜, 吕健, 张丽茹, 等. 脓毒症早期识别的研究进展[J]. 临床急诊杂志, 2022, 23(7): 513-518. doi: 10.13201/j.issn.1009-5918.2022.07.011
引用本文: 唐瑜, 吕健, 张丽茹, 等. 脓毒症早期识别的研究进展[J]. 临床急诊杂志, 2022, 23(7): 513-518. doi: 10.13201/j.issn.1009-5918.2022.07.011
TANG Yu, LV Jian, ZHANG Liru, et al. Research progress in early identification of sepsis[J]. J Clin Emerg, 2022, 23(7): 513-518. doi: 10.13201/j.issn.1009-5918.2022.07.011
Citation: TANG Yu, LV Jian, ZHANG Liru, et al. Research progress in early identification of sepsis[J]. J Clin Emerg, 2022, 23(7): 513-518. doi: 10.13201/j.issn.1009-5918.2022.07.011

脓毒症早期识别的研究进展

详细信息
    通讯作者: 李素彦,E-mail:giky114@sina.com

    Δ审校者

  • 中图分类号: R631

Research progress in early identification of sepsis

More Information
  • 脓毒症是威胁人类健康的急危重症之一,其发病后的致残率及致死率均处于较高水平,早期发现并尽早治疗脓毒症可以有效降低这一比例。因此,对脓毒症的早期判别已成为国际共识。目前,有很多临床手段及科学研究在脓毒症的识别和评估方面进行了探索,并取得了相应的进展。该文从脓毒症相关标志物、病原体的早期识别、宿主的临床易感性及综合预测模型的构建4个方面对脓毒症早期识别进行系统阐述,以期为临床医务工作者提供参考。
  • 加载中
  • [1]

    Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. doi: 10.1016/S0140-6736(19)32989-7

    [2]

    Xie J, Wang H, Kang Y, et al. The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey[J]. Crit Care Med, 2020, 48(3): e209-e218. doi: 10.1097/CCM.0000000000004155

    [3]

    Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181-1247. doi: 10.1007/s00134-021-06506-y

    [4]

    Seymour CW, Gesten F, Prescott HC, et al. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis[J]. N Engl J Med, 2017, 376(23): 2235-2244. doi: 10.1056/NEJMoa1703058

    [5]

    王仲, 魏捷, 朱华栋, 等. 中国脓毒症早期预防与阻断急诊专家共识[J]. 临床急诊杂志, 2020, 21(7): 517-529. http://zzlc.cbpt.cnki.net/WKC/WebPublication/paperDigest.aspx?paperID=c441f903-8d56-4e1e-bc33-972383f6cb59

    [6]

    Tan M, Lu Y, Jiang H, et al. The diagnostic accuracy of procalcitonin and C-reactive protein for sepsis: A systematic review and meta-analysis[J]. J Cell Biochem, 2019, 120(4): 5852-5859. doi: 10.1002/jcb.27870

    [7]

    Liu Y, Hou JH, Li Q, et al. Biomarkers for diagnosis of sepsis in patients with systemic inflammatory response syndrome: a systematic review and meta-analysis[J]. Springerplus, 2016, 5(1): 2091. doi: 10.1186/s40064-016-3591-5

    [8]

    Kondo Y, Umemura Y, Hayashida K, et al. Diagnostic value of procalcitonin and presepsin for sepsis in critically ill adult patients: a systematic review and meta-analysis[J]. J Intensive Care, 2019, 7: 22. doi: 10.1186/s40560-019-0374-4

    [9]

    Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets, an updated view[J]. Mediators Inflamm, 2013, 2013: 165974.

    [10]

    Rios-Toro JJ, Marquez-Coello M, García-Álvarez JM, et al. Soluble membrane receptors, interleukin 6, procalcitonin and C reactive protein as prognostic markers in patients with severe sepsis and septic shock[J]. PLoS One, 2017, 12(4): e0175254. doi: 10.1371/journal.pone.0175254

    [11]

    Song J, Park DW, Moon S, et al. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions[J]. BMC Infect Dis, 2019, 19(1): 968. doi: 10.1186/s12879-019-4618-7

    [12]

    Dimoula A, Pradier O, Kassengera Z, et al. Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients[J]. Clin Infect Dis, 2014, 58(6): 820-829. doi: 10.1093/cid/cit936

    [13]

    Yeh CF, Wu CC, Liu SH, et al. Comparison of the accuracy of neutrophil CD64, procalcitonin, and C-reactive protein for sepsis identification: a systematic review and meta-analysis[J]. Ann Intensive Care, 2019, 9(1): 5. doi: 10.1186/s13613-018-0479-2

    [14]

    Pierrakos C, Velissaris D, Bisdorff M, et al. Biomarkers of sepsis: time for a reappraisal[J]. Crit Care, 2020, 24(1): 287. doi: 10.1186/s13054-020-02993-5

    [15]

    Wang JF, Yu ML, Yu G, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis[J]. Biochem Biophys Res Commun, 2010, 394(1): 184-188. doi: 10.1016/j.bbrc.2010.02.145

    [16]

    Ma Y, Vilanova D, Atalar K, et al. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis[J]. PLoS One, 2013, 8(10): e75918. doi: 10.1371/journal.pone.0075918

    [17]

    Wang L, Wang HC, Chen C, et al. Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients[J]. Exp Ther Med, 2013, 5(4): 1101-1104. doi: 10.3892/etm.2013.937

    [18]

    Neill LA, Sheedy FJ. MicroRNAs: the fine-tuners of Toll-like receptor signalling[J]. Nat Rev Immunol, 2011, 11(3): 163-175. doi: 10.1038/nri2957

    [19]

    Kingsley S, Bhat BV. Role of microRNAs in sepsis[J]. Inflamm Res, 2017, 66(7): 553-569. doi: 10.1007/s00011-017-1031-9

    [20]

    Liu J, Yang Y, Lu R, et al. MicroRNA-381-3p signatures as a diagnostic marker in patients with sepsis and modulates sepsis-steered cardiac damage and inflammation by binding HMGB1[J]. Bioengineered, 2021, 12(2): 11936-11946. doi: 10.1080/21655979.2021.2006967

    [21]

    Caserta S, Mengozzi M, Kern F, et al. Severity of Systemic Inflammatory Response Syndrome Affects the Blood Levels of Circulating Inflammatory-Relevant MicroRNAs[J]. Front Immunol, 2017, 8: 1977.

    [22]

    Wang Q, Liu K, Jin C. Clinical value of microRNA-378a-3p in sepsis and its role in sepsis-induced inflammation and cardiac dysfunction[J]. Bioengineered, 2021, 12(1): 8496-8504. doi: 10.1080/21655979.2021.1985339

    [23]

    Goh C, Knight JC. Enhanced understanding of the host-pathogen interaction in sepsis: new opportunities for omic approaches[J]. Lancet Respir Med, 2017, 5(3): 212-223. doi: 10.1016/S2213-2600(17)30045-0

    [24]

    Skibsted S, Bhasin MK, Aird WC, et al. Bench-to-bedside review: future novel diagnostics for sepsis-a systems biology approach[J]. Crit Care, 2013, 17(5): 231. doi: 10.1186/cc12693

    [25]

    Mansur A, Liese B, Steinau M, et al. The CD14 rs2569190 TT Genotype Is Associated with an Improved 30-Day Survival in Patients with Sepsis: A Prospective Observational Cohort Study[J]. PLoS One, 2015, 10(5): e0127761. doi: 10.1371/journal.pone.0127761

    [26]

    Zheng R, Fu Z, Zhao Z. Association of Transforming Growth Factor β1 Gene Polymorphisms and Inflammatory Factor Levels with Susceptibility to Sepsis[J]. Genet Test Mol Biomarkers, 2021, 25(3): 187-198. doi: 10.1089/gtmb.2020.0143

    [27]

    McHugh L, Seldon TA, Brandon RA, et al. A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts[J]. PLoS Med, 2015, 12(12): e1001916. doi: 10.1371/journal.pmed.1001916

    [28]

    Xu D, Liao S, Li P, et al. Metabolomics Coupled with Transcriptomics Approach Deciphering Age Relevance in Sepsis[J]. Aging Dis, 2019, 10(4): 854-870. doi: 10.14336/AD.2018.1027

    [29]

    Mocellin S, Rossi CR, Traldi P, et al. Molecular oncology in the post-genomic era: the challenge of proteomics[J]. Trends Mol Med, 2004, 10(1): 24-32. doi: 10.1016/j.molmed.2003.11.001

    [30]

    Kalenka A, Feldmann RE Jr, Otero K, et al. Changes in the serum proteome of patients with sepsis and septic shock[J]. Anesth Analg, 2006, 103(6): 1522-1526. doi: 10.1213/01.ane.0000242533.59457.70

    [31]

    Hayashi N, Yamaguchi S, Rodenburg F, et al. Multiple biomarkers of sepsis identified by novel time-lapse proteomics of patient serum[J]. PLoS One, 2019, 14(9): e0222403. doi: 10.1371/journal.pone.0222403

    [32]

    Ilaiwy A, Ten HG, Bain JR, et al. Identification of Metabolic Changes in Ileum, Jejunum, Skeletal Muscle, Liver, and Lung in a Continuous I.V. Pseudomonas aeruginosa Model of Sepsis Using Nontargeted Metabolomics Analysis[J]. Am J Pathol, 2019, 189(9): 1797-1813. doi: 10.1016/j.ajpath.2019.05.021

    [33]

    Ping F, Li Y, Cao Y, et al. Metabolomics Analysis of the Development of Sepsis and Potential Biomarkers of Sepsis-Induced Acute Kidney Injury[J]. Oxid Med Cell Longev, 2021, 2021: 6628847.

    [34]

    Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287

    [35]

    Dubourg G, Raoult D, Fenollar F. Emerging methodologies for pathogen identification in bloodstream infections: an update[J]. Expert Rev Mol Diagn, 2019, 19(2): 161-173. doi: 10.1080/14737159.2019.1568241

    [36]

    刘小琦, 杜琼, 刘祥琴. 阴道分泌物念珠菌感染检测方法对比分析[J]. 重庆医学, 2017, 46(35): 4927-4929. doi: 10.3969/j.issn.1671-8348.2017.35.009

    [37]

    Ma X, Li Y, Liang Y, et al. Development of a DNA microarray assay for rapid detection of fifteen bacterial pathogens in pneumonia[J]. BMC Microbiol, 2020, 20(1): 177. doi: 10.1186/s12866-020-01842-3

    [38]

    Dark P, Blackwood B, Gates S, et al. Accuracy of LightCycler SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis[J]. Intensive Care Med, 2015, 41(1): 21-33. doi: 10.1007/s00134-014-3553-8

    [39]

    Galiana A, Coy J, Gimeno A, et al. Evaluation of the Sepsis Flow Chip assay for the diagnosis of blood infections[J]. PLoS One, 2017, 12(5): e0177627. doi: 10.1371/journal.pone.0177627

    [40]

    Decuypere S, Meehan CJ, Van Puyvelde S, et al. Diagnosis of Bacterial Bloodstream Infections: A 16S Metagenomics Approach[J]. PLoS Negl Trop Dis, 2016, 10(2): e0004470. doi: 10.1371/journal.pntd.0004470

    [41]

    Long Y, Zhang Y, Gong Y, et al. Diagnosis of Sepsis with Cell-free DNA by Next-Generation Sequencing Technology in ICU Patients[J]. Arch Med Res, 2016, 47(5): 365-371. doi: 10.1016/j.arcmed.2016.08.004

    [42]

    Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis[J]. Crit Care Med, 2006, 34(1): 15-21. doi: 10.1097/01.CCM.0000194535.82812.BA

    [43]

    Starr ME, Saito H. Sepsis in old age: review of human and animal studies[J]. Aging Dis, 2014, 5(2): 126-136.

    [44]

    Gavazzi G, Krause KH. Ageing and infection[J]. Lancet Infect Dis, 2002, 2(11): 659-666. doi: 10.1016/S1473-3099(02)00437-1

    [45]

    Wang Z, Ren J, Wang G, et al. Association Between Diabetes Mellitus and Outcomes of Patients with Sepsis: A Meta-Analysis[J]. Med Sci Monit, 2017, 23: 3546-3555. doi: 10.12659/MSM.903144

    [46]

    Schuetz P, Castro P, Shapiro NI. Diabetes and sepsis: preclinical findings and clinical relevance[J]. Diabetes Care, 2011, 34(3): 771-778. doi: 10.2337/dc10-1185

    [47]

    Perl SH, Bloch O, Zelnic-Yuval D, et al. Sepsis-induced activation of endogenous GLP-1 system is enhanced in type 2 diabetes[J]. Diabetes Metab Res Rev, 2018, 34(4): e2982. doi: 10.1002/dmrr.2982

    [48]

    Liang H, Ding X, Li L, et al. Association of preadmission metformin use and mortality in patients with sepsis and diabetes mellitus: a systematic review and meta-analysis of cohort studies[J]. Crit Care, 2019, 23(1): 50. doi: 10.1186/s13054-019-2346-4

    [49]

    Shah FA, Mahmud H, Gallego-Martin T, et al. Therapeutic Effects of Endogenous Incretin Hormones and Exogenous Incretin-Based Medications in Sepsis[J]. J Clin Endocrinol Metab, 2019, 104(11): 5274-5284. doi: 10.1210/jc.2019-00296

    [50]

    Tew M, Dalziel K, Thursky K, et al. Excess cost of care associated with sepsis in cancer patients: Results from a population-based case-control matched cohort[J]. PLoS One, 2021, 16(8): e0255107. doi: 10.1371/journal.pone.0255107

    [51]

    McCreery RJ, Florescu DF, Kalil AC. Sepsis in Immunocompromised Patients Without Human Immunodeficiency Virus[J]. J Infect Dis, 2020, 222(Suppl 2): S156-S165.

    [52]

    Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine[J]. Chest, 1992, 101(6): 1644-1655. doi: 10.1378/chest.101.6.1644

    [53]

    Vincent JL, de Mendonça A, Cantraine F, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on "sepsis-related problems" of the European Society of Intensive Care Medicine[J]. Crit Care Med, 1998, 26(11): 1793-1800. doi: 10.1097/00003246-199811000-00016

    [54]

    Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 762-774. doi: 10.1001/jama.2016.0288

    [55]

    Probst L, Schalk E, Liebregts T, et al. Prognostic accuracy of SOFA, qSOFA and SIRS criteria in hematological cancer patients: a retrospective multicenter study[J]. J Intensive Care, 2019, 7: 41. doi: 10.1186/s40560-019-0396-y

    [56]

    Tian H, Zhou J, Weng L, et al. Accuracy of qSOFA for the diagnosis of sepsis-3: a secondary analysis of a population-based cohort study[J]. J Thorac Dis, 2019, 11(5): 2034-2042. doi: 10.21037/jtd.2019.04.90

    [57]

    Harada M, Takahashi T, Haga Y, et al. Comparative study on quick sequential organ failure assessment, systemic inflammatory response syndrome and the shock index in prehospital emergency patients: single-site retrospective study[J]. Acute Med Surg, 2019, 6(2): 131-137. doi: 10.1002/ams2.391

    [58]

    Serafim R, Gomes JA, Salluh J, et al. A Comparison of the Quick-SOFA and Systemic Inflammatory Response Syndrome Criteria for the Diagnosis of Sepsis and Prediction of Mortality: A Systematic Review and Meta-Analysis[J]. Chest, 2018, 153(3): 646-655. doi: 10.1016/j.chest.2017.12.015

    [59]

    Long B, April MD. Are qSOFA Criteria Better Than the Systemic Inflammatory Response Syndrome Criteria for Diagnosing Sepsis and Predicting Inhospital Mortality?[J]. Ann Emerg Med, 2018, 72(4): 470-472. doi: 10.1016/j.annemergmed.2018.03.008

    [60]

    Moreno-Torres V, Royuela A, Munez E, et al. Better prognostic ability of NEWS2, SOFA and SAPS-Ⅱ in septic patients[J]. Med Clin(Barc), 2021.

    [61]

    Beam AL, Kohane IS. Big Data and Machine Learning in Health Care[J]. JAMA, 2018, 319(13): 1317-1318. doi: 10.1001/jama.2017.18391

    [62]

    Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare[J]. Nat Biomed Eng, 2018, 2(10): 719-731. doi: 10.1038/s41551-018-0305-z

    [63]

    Bedoya AD, Futoma J, Clement ME, et al. Machine learning for early detection of sepsis: an internal and temporal validation study[J]. JAMA Open, 2020, 3(2): 252-260. doi: 10.1093/jamiaopen/ooaa006

  • 加载中
计量
  • 文章访问数:  914
  • PDF下载数:  1272
  • 施引文献:  0
出版历程
收稿日期:  2022-01-08
刊出日期:  2022-07-10

目录