肠道菌群与急性发作支气管哮喘患儿肺功能和气道炎症细胞的相关性分析

唐国英, 唐莉, 刘青, 等. 肠道菌群与急性发作支气管哮喘患儿肺功能和气道炎症细胞的相关性分析[J]. 临床急诊杂志, 2022, 23(7): 504-509. doi: 10.13201/j.issn.1009-5918.2022.07.009
引用本文: 唐国英, 唐莉, 刘青, 等. 肠道菌群与急性发作支气管哮喘患儿肺功能和气道炎症细胞的相关性分析[J]. 临床急诊杂志, 2022, 23(7): 504-509. doi: 10.13201/j.issn.1009-5918.2022.07.009
TANG Guoying, TANG Li, LIU Qing, et al. Correlation analysis of intestinal flora with lung function and airway inflammatory cells in children with acute bronchial asthma[J]. J Clin Emerg, 2022, 23(7): 504-509. doi: 10.13201/j.issn.1009-5918.2022.07.009
Citation: TANG Guoying, TANG Li, LIU Qing, et al. Correlation analysis of intestinal flora with lung function and airway inflammatory cells in children with acute bronchial asthma[J]. J Clin Emerg, 2022, 23(7): 504-509. doi: 10.13201/j.issn.1009-5918.2022.07.009

肠道菌群与急性发作支气管哮喘患儿肺功能和气道炎症细胞的相关性分析

详细信息

Correlation analysis of intestinal flora with lung function and airway inflammatory cells in children with acute bronchial asthma

More Information
  • 目的 探讨肠道菌群与急性发作期支气管哮喘患儿肺功能和气道炎症的相关性。方法 选择2018年2月-2021年6月儿科病房收治的105例急性发作期支气管哮喘患儿为研究对象,根据哮喘急性发作严重程度分级,将患儿分为轻度组(36例)、中度组(42例)和重度组(27例)。另选择31例健康儿童为对照组。所有受试者均采集大便标本,荧光定量PCR检测肠道菌群相对丰度。比较各组肠道菌群状态,分析肠道菌群丰度与患儿肺功能和气道炎症细胞、炎症因子的关系。结果 重度组、中度组、轻度组乳酸杆菌、脆弱拟杆菌、毛螺菌、韦荣球菌、普拉梭菌和罗氏菌丰度低于对照组(P<0.001),且重度组低于中度组和轻度组(P<0.05);重度组、中度组、轻度组分节丝状菌、艰难梭菌丰度高于对照组(P<0.001),且重度组高于中度组和轻度组(P<0.05)。重度组第1秒用力呼气容积(FEV1)、用力肺活量(FVC)、FEV1/FVC、最大呼气峰流量(PEF)占正常预计值的百分率(PEF%)低于中度组和轻度组(P<0.05),诱导痰细胞总数、嗜酸粒细胞比例、肿瘤坏死因子-α(TNF-α)、IL-6高于中度组和轻度组(P<0.05)。支气管哮喘患儿乳酸杆菌、脆弱拟杆菌相对丰度与气道细胞总数、嗜酸粒细胞、TNF-α、IL-6呈负相关(r=-0.513、-0.493;-0.491、-0.401;-0.506、-0.477;-0.385、-0.401,均P<0.05),与FEV1、FVC、FEV1/FVC、PEF%呈正相关(r=0.477、0.395、0.362、0.509;0.394、0.305、0.293、0.411,均P<0.05);分节丝状菌、艰难梭菌相对丰度与气道细胞总数、嗜酸粒细胞、TNF-α、IL-6呈正相关(r=0.439、0.397;0.409、0.351;0.341、0.369;0.321、0.309,均P<0.05),与FEV1、FVC、FEV1/FVC、PEF%呈负相关(r=-0.413、-0.336、-0.274、-0.492;-0.369、-0.273、-0.391、-0.416,均P<0.05)。结论 急性发作期支气管哮喘患儿肠道菌群紊乱与肺功能降低、气道炎症细胞增加、炎症因子水平增高有关。
  • 加载中
  • 表 1  4组受试儿基线资料的比较 例,X±S,例(%)

    组别 例数 年龄/岁 男/女 体重/kg 心率/(次·min-1) 血氧饱和度/% 用药情况
    吸入型糖皮质激素 吸入型糖皮质激素联合白三烯 吸入型糖皮质激素联合茶碱类药物
    轻度组 36 8.42±1.99 20/16 36.00±7.06 107.81±6.901) 94.44±4.391) 20(55.56) 10(27.78) 6(16.67)
    中度组 42 7.79±2.16 27/15 35.10±8.96 110.36±6.311) 91.24±3.411) 23(54.76) 12(28.57) 7(16.67)
    重度组 27 8.67±1.92 16/9 35.81±6.94 107.81±7.771) 88.07±2.121)2)3) 13(48.15) 10(37.04) 4(14.81)
    对照组 31 8.42±2.23 18/13 36.61±6.80 103.48±6.96 98.81±1.03
    F2 1.186 0.825 0.242 5.908 64.406 0.745
    P 0.318 0.844 0.867 0.001 <0.001 0.946
    与对照组比较,1)P<0.05;与轻度组比较,2)P<0.05;与中度组比较,3)P<0.05。
    下载: 导出CSV

    表 2  4组受试儿肠道菌群相对丰度的比较 X±S

    组别 例数 乳酸杆菌 脆弱拟杆菌 毛螺菌 韦荣球菌 普拉梭菌 罗氏菌
    轻度组 36 18.86±3.491) 21.56±4.071) 7.86±1.861) 9.42±1.851) 3.03±0.831) 5.03±1.071)
    中度组 42 18.95±4.401) 21.93±4.021) 8.31±1.351) 10.19±2.111) 3.12±0.881) 5.19±0.981)
    重度组 27 12.70±3.231)2)3) 14.81±3.641)2)3) 6.30±1.121)2)3) 7.30±1.701)2)3) 2.33±0.771)2)3) 3.52±1.001)2)3)
    对照组 31 32.03±5.67 26.71±3.67 9.19±2.07 14.00±3.20 4.00±1.05 6.13±1.68
    F 106.745 45.478 15.612 44.711 17.328 23.178
    P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
    组别 例数 梭状芽胞杆菌 分节丝状菌 艰难梭菌 大肠埃希菌 瘤胃球菌 肠球菌
    轻度组 36 21.25±4.24 4.72±0.731) 2.03±0.691) 8.33±2.25 6.22±1.55 7.19±1.27
    中度组 42 21.21±3.36 4.98±1.281) 2.19±0.731) 8.26±1.56 6.17±1.48 7.17±1.99
    重度组 27 21.48±3.92 7.00±1.361)2)3) 3.30±0.661)2)3) 8.04±1.40 6.00±1.56 7.15±1.04
    对照组 31 23.03±4.22 2.90±0.69 1.03±0.18 8.42±1.86 6.10±1.59 7.03±1.26
    F 1.596 72.439 64.850 0.230 0.118 0.076
    P 0.193 <0.001 <0.001 0.875 0.949 0.973
    与对照组比较,1)P<0.05;与轻度组比较,2)P<0.05;与中度组比较,3)P<0.05。
    下载: 导出CSV

    表 3  3组支气管哮喘患儿气道炎症细胞、炎症因子和肺功能比较 X±S

    组别 例数 细胞总数/(×108·L-1) 巨噬细胞/% 嗜酸粒细胞/% 中性粒细胞/% 淋巴细胞/% TNF-α/(ng·L-1)
    轻度组 36 2.42±0.28 42.30±10.55 3.02±0.44 44.21±6.41 5.58±0.95 9.22±1.90
    中度组 42 3.02±0.661) 40.44±9.64 5.28±1.251) 44.48±6.51 5.54±0.95 11.99±2.681)
    重度组 27 3.49±0.821)2) 37.24±12.90 8.33±2.001)2) 44.85±6.17 5.65±0.73 19.13±6.091)2)
    F 24.329 1.685 126.898 0.077 0.123 57.815
    P <0.001 0.191 <0.001 0.926 0.884 <0.001
    组别 例数 IL-6/(pg·mL-1) FEV1/L FVC/L FEV1/FVC/% PEF%
    轻度组 36 12.13±3.50 1.75±0.34 2.41±0.40 74.13±15.53 83.77±3.64
    中度组 42 15.25±3.201) 1.44±0.271) 2.14±0.211) 67.72±14.411) 69.80±8.301)
    重度组 27 17.21±3.301)2) 1.08±0.181)2) 1.76±0.281)2) 63.92±14.381)2) 42.08±4.361)2)
    F 18.952 44.925 35.203 3.911 366.723
    P <0.001 <0.001 <0.001 <0.001 <0.001
    与轻度组比较,1)P<0.05;与中度组比较,2)P<0.05。
    下载: 导出CSV

    表 4  肠道菌群与肺功能和气道炎症细胞的相关性分析

    指标 乳酸杆菌 脆弱拟杆菌 分节丝状菌 毛螺菌
    r P r P r P r P
    细胞总数 -0.513 <0.001 -0.491 <0.001 0.439 <0.001 -0.209 0.109
    嗜酸粒细胞 -0.493 <0.001 -0.401 <0.001 0.397 0.001 -0.163 0.231
    TNF-α -0.506 <0.001 -0.385 0.002 0.341 0.016 -0.102 0.469
    IL-6 -0.477 <0.001 -0.401 <0.001 0.369 0.008 -0.154 0.239
    FEV1 0.477 <0.001 0.394 0.004 -0.413 <0.001 0.158 0.295
    FVC 0.395 0.003 0.305 0.020 -0.336 0.018 0.143 0.342
    FEV1/FVC 0.362 0.010 0.293 0.022 -0.274 0.024 0.136 0.392
    PEF% 0.509 <0.001 0.411 <0.001 -0.492 <0.001 0.128 0.432
    指标 韦荣球菌 普拉梭菌 罗氏菌 艰难梭菌
    r P r P r P r P
    细胞总数 -0.138 0.386 -0.096 0.581 -0.162 0.237 0.409 <0.001
    嗜酸粒细胞 -0.157 0.302 -0.105 0.536 -0.152 0.323 0.351 0.012
    TNF-α -0.143 0.245 -0.107 0.415 -0.096 0.623 0.321 0.032
    IL-6 -0.165 0.229 -0.137 0.269 -0.127 0.354 0.309 0.039
    FEV1 0.201 0.129 0.133 0.418 0.203 0.115 -0.369 0.008
    FVC 0.169 0.225 0.117 0.488 0.178 0.207 -0.273 0.030
    FEV1/FVC 0.172 0.213 0.126 0.449 0.141 0.356 -0.391 0.006
    PEF% 0.155 0.318 0.145 0.337 0.139 0.371 -0.416 <0.001
    下载: 导出CSV
  • [1]

    Tiotiu AI, Novakova P, Nedeva D, et al. Impact of Air Pollution on Asthma Outcomes[J]. Int J Environ Res Public Health, 2020, 17(17): 6212. doi: 10.3390/ijerph17176212

    [2]

    杨昕, 黄淑敏, 何静, 等. 肠道微生态在支气管哮喘发生发展中的作用研究进展[J]. 中华儿科杂志, 2021, 59(6): 530-533. doi: 10.3760/cma.j.cn112140-20201108-01014

    [3]

    Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation[J]. Nat Med, 2016, 22(10): 1187-1191. doi: 10.1038/nm.4176

    [4]

    Galazzo G, van Best N, Bervoets L, et al. Development of the microbiota and associations with birth mode, diet, and atopic disorders in a longitudinal analysis of stool samples, collected from infancy through early childhood[J]. Gastroenterology, 2020, 158(6): 1584-1596. doi: 10.1053/j.gastro.2020.01.024

    [5]

    Roduit C, Frei R, Ferstl R, et al. High levels of butyrate and propionate in early life are associated with protection against atopy[J]. Allergy, 2019, 74(4): 799-809. doi: 10.1111/all.13660

    [6]

    中华医学会儿科学分会呼吸学组, 《中华儿科杂志》编辑委员会. 儿童支气管哮喘诊断与防治指南(2016年版)[J]. 中华儿科杂志, 2016, 54(3): 167-181. doi: 10.3760/cma.j.issn.0578-1310.2016.03.003

    [7]

    Barcik W, Boutin RCT, Sokolowska M, et al. The Role of Lung and Gut Microbiota in the Pathology of Asthma[J]. Immunity, 2020, 52(2): 241-255. doi: 10.1016/j.immuni.2020.01.007

    [8]

    Watson RL, de Koff EM, Bogaert D. Characterising the respiratory microbiome[J]. Eur Respir J, 2019, 53(2): 1801711. doi: 10.1183/13993003.01711-2018

    [9]

    Arrieta MC, Sadarangani M, Brown EM, et al. A humanized microbiota mouse model of ovalbumin-induced lung inflammation[J]. Gut Microbes, 2016, 7(4): 342-352. doi: 10.1080/19490976.2016.1182293

    [10]

    van Nimwegen FA, Penders J, Stobberingh EE, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy[J]. J Allergy Clin Immunol, 2011, 128(5): 948-955. doi: 10.1016/j.jaci.2011.07.027

    [11]

    Schuijs MJ, Willart MA, Vergote K, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells[J]. Science, 2015, 349(6252): 1106-1110. doi: 10.1126/science.aac6623

    [12]

    Frati F, Salvatori C, Incorvaia C, et al. The Role of the Microbiome in Asthma: The Gut-Lung Axis[J]. Int J Mol Sci, 2018, 20(1): 123. doi: 10.3390/ijms20010123

    [13]

    Huang CF, Chie WC, Wang IJ. Efficacy of Lactobacillus Administration in School-Age Children with Asthma: A Randomized, Placebo-Controlled Trial[J]. Nutrients, 2018, 10(11): 1678. doi: 10.3390/nu10111678

    [14]

    Hongyan L. Esculetin Attenuates Th2 and Th17 Responses in an Ovalbumin-Induced Asthmatic Mouse Model[J]. Inflammation, 2016, 39(2): 735-743. doi: 10.1007/s10753-015-0300-4

    [15]

    Troy EB, Kasper DL. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system[J]. Front Biosci(Landmark Ed), 2010, 15: 25-34. doi: 10.2741/3603

    [16]

    Jiang F, Meng D, Weng M, et al. The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL-1β-induced inflammation in human fetal enterocytes via toll receptors 2 and 4[J]. PLoS One, 2017, 12(3): e0172738. doi: 10.1371/journal.pone.0172738

    [17]

    Wang Y, Yin Y, Chen X, et al. Induction of Intestinal Th17 Cells by Flagellins From Segmented Filamentous Bacteria[J]. Front Immunol, 2019, 10: 2750. doi: 10.3389/fimmu.2019.02750

    [18]

    Jia YP, Wang K, Zhang ZJ, et al. TLR2/TLR4 activation induces Tregs and suppresses intestinal inflammation caused by Fusobacterium nucleatum in vivo[J]. PLoS One, 2017, 12(10): e0186179. doi: 10.1371/journal.pone.0186179

    [19]

    Yamazaki T, Ohshio K, Sugamata M, et al. Lactic acid bacterium, Lactobacillus paracasei KW3110, suppresses inflammatory stress-induced caspase-1 activation by promoting interleukin-10 production in mouse and human immune cells[J]. PLoS One, 2020, 15(8): e0237754. doi: 10.1371/journal.pone.0237754

    [20]

    Luu M, Visekruna A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells[J]. Eur J Immunol, 2019, 49(6): 842-848. doi: 10.1002/eji.201848009

    [21]

    Schulthess J, Pandey S, Capitani M, et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages[J]. Immunity, 2019, 50(2): 432-445. doi: 10.1016/j.immuni.2018.12.018

  • 加载中
计量
  • 文章访问数:  656
  • PDF下载数:  306
  • 施引文献:  0
出版历程
收稿日期:  2022-01-13
刊出日期:  2022-07-10

目录