Risk factors analysis of sepsis induced coagulopathy caused by intra-abdominal infection
-
摘要: 目的 探讨腹腔感染相关脓毒症凝血功能障碍的危险因素。方法 回顾性研究我院ICU2018年7月—2019年12月期间收治的145例腹腔感染相关脓毒症患者的临床资料,根据脓毒症凝血功能障碍诊断标准分为凝血障碍组和凝血正常组,进行单因素和多因素logistic回归性分析。结果 腹腔感染相关脓毒症患者凝血功能障碍发病率为42.76%,病死率22.58%。凝血正常组和凝血障碍组APACHE Ⅱ评分、发病至入院时间、手术时间、休克、血浆乳酸及降钙素原比较,均差异有统计学意义(均P< 0.05);logistic多因素回归分析显示:乳酸(OR=1.462,P< 0.05)、降钙素原(OR=1.043,P< 0.05)与腹腔感染相关脓毒症发生凝血功能障碍相关。与凝血正常组比较,腹腔感染相关脓毒症凝血障碍组ICU住院时间、多器官功能衰竭及30 d病死率比较差异有统计学意义(P>0.05)。结论 凝血功能障碍是腹腔感染相关脓毒症常见的并发症之一,病死率高,并发症多,血浆乳酸、降钙素原是腹腔感染相关脓毒症患者发生凝血功能障碍的危险因素。Abstract: Objective To analyze the risk factors Analysis of sepsis induced coagulopathy caused by intra-abdominal infection.Methods A total of 145 adult patients with sepsis caused by intra-abdominal infection admitted to the Department of Intensive Care Unit of Nanjing Drum Tower Hospital from July 2018 to December 2019 were included in the study. According to sepsis-induced coagulopathy scoring criteria, the patients were assigned into an coagulopathy group and non-coagulopathy group. Comparing the differences in clinical data of two groups with univariateanalysis and logistic analysis were used to identify the risk factors of coagulopathy.Results The overall incidence of coagulopathy was 42.76%, and the mortality was 22.58%. Univariateanalysis revealed that there were significant differences in APACHE Ⅱ score、Time from ache to initiation of being admitted to hospital、Duration of surgery、shock and lactate and procalcitonin(allP< 0.05). Lactate(OR=1.462,P< 0.05) and procalcitonin(OR=1.043,P< 0.05) were found to be related to the development of coagulopathy by logistic analysis.Conclusion Sepsis-induced coagulopathy is a common complication in patients with intra-abdominal infection and has a high mortality. This study shows that lactate and procalcitonin are risk factors most likely associated with coagulophy development.
-
Key words:
- abdominal infection /
- sepsis /
- coagulopathy /
- risk factor
-
表 1 脓毒症凝血功能障碍诊断标准
指标 0分 1分 2分 PT-INR ≤1.2 >1.2 >1.4 血小板/(×109·L-1) ≥150 < 150 < 100 SOFA评分/分 0 1 ≥2 表 2 两组患者并发症及病死率比较
例(%), M(P25,P75) 并发症及病死率 凝血正常组
(83例)凝血障碍组
(62例)P ICU住院时间/d 2.00
(1.00,3.00)4.00
(3.00,7.00)< 0.001 出血 0 2(3.23) 0.181 菌血症 2(57.83) 3(70.97) 0.651 MODS 12(14.46) 47(75.81) < 0.001 30 d病死率/% 0 22.58 < 0.001 表 3 腹腔感染相关脓毒症凝血功能障碍危险因素的单因素分析结果
例(%),X±S,M(P25,P75) 危险因素 凝血正常组(83例) 凝血障碍组(62例) χ2/t P 年龄/岁 70.77±18.55 69.48±11.91 -0.426 0.672 性别 男 48(57.83) 44(70.97) 2.641 0.119 女 35(42.17) 18(29.03) 基础疾病 高血压病 33(39.76) 24(38.71) 0.016 1.000 糖尿病 13(15.66) 6(9.68) 1.117 0.330 心血管疾病 6(9.68) 2(3.23) 1.091 0.467 APACHE Ⅱ评分/分 11.58±4.51 13.92±6.03 2.486 0.016 初始抗生素合理 79(95.18) 59(95.16) 0.000 1.000 发病至入院时间/h 24.00(13.00,48.00) 24.00(10.00,72.00) -7.040 < 0.001 术中指标 手术时间/h 2.33±1.17 2.95±1.18 -2.938 0.005 休克 26(31.33) 42(67.74) 18.899 < 0.001 液体平衡量/mL 1321.13±520.66 2372.10±1574.13 -4.955 < 0.001 出血量/mL 100.00(50.00,150.00) 100.00(50.00,200.00) -1.877 0.061 手术部位 上消化道 18(21.69) 14(22.58) 0.016 1.000 下消化道 65(78.31) 48(77.42) 原发病 消化道穿孔 45(54.21) 38(61.29) 0.465 0.403 肠系膜动脉栓塞 14(16.86) 10(16.12) 0.000 1.000 肠梗阻 19(22.89) 11(17.74) 0.303 0.536 嵌顿疝 5(6.02) 3(4.83) 0.096 1.000 手术方式 肠切除手术 50(60.24) 38(61.29) 0.016 1.000 穿孔修补术 18(21.68) 15(24.19) 0.032 1.000 肠粘连松解 15(18.07) 9(14.51) 0.328 0.655 术后指标 革兰阴性杆菌 12(14.45) 16(24.19) 2.250 0.136 革兰阳性球菌 3(3.61) 4(6.45) 0.622 0.461 真菌 2(2.40) 3(4.83) 0.629 0.651 混合感染 2(2.40) 2(3.22) 0.087 1.000 血乳酸/(mmol·L-1) 1.20(0.90,2.50) 3.00(1.70,4.10) -5.977 < 0.001 直肠温度/℃ 36.60±2.71 37.11±2.08 -1.081 0.285 白细胞/(×109·L-1) 10.87±4.72 10.61±7.28 0.234 0.816 降钙素原/(ng·mL-1) 1.89(0.50,7.00) 17.00(2.83,27.00) -5.387 < 0.001 C反应蛋白/(mg·dL-1) 110.34±70.48 132.67±62.82 -1.821 0.074 肝功能损伤 6(7.22) 10(16.13) 2.864 0.111 表 4 腹腔感染相关脓毒症凝血功能障碍危险因素的logistic回归分析
危险因素 B SE OR(95%CI) P 乳酸 0.379 0.117 1.462(1.163~1.837) 0.001 降钙素原 0.042 0.016 1.043(1.011~1.075) 0.008 -
[1] Leppäniemi A, Kimball EJ, De Laet I, et al. Management of abdominal sepsis-a paradigm shift?[J]. Anaesthesiol Intensive Ther, 2015, 47(4): 400-408. doi: 10.5603/AIT.a2015.0026
[2] Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease[J]. Thromb J, 2019, 17: 10. doi: 10.1186/s12959-019-0198-4
[3] Nystrup KB, Windeløv NA, Thomsen AB, et al. Reduced clot strength upon admission, evaluated by thrombelastography(TEG), in trauma patients is independently associated with increased 30-day mortality[J]. Scand J Trauma Resusc Emerg Med, 2011, 19: 52. doi: 10.1186/1757-7241-19-52
[4] Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287
[5] Iba T, Nisio MD, Levy JH, et al. New criteria for sepsis-induced coagulopathy(SIC)following the revised sepsis definition: a retrospective analysis of a nationwide survey[J]. BMJ Open, 2017, 7(9): e017046. doi: 10.1136/bmjopen-2017-017046
[6] Levi M, de Jonge E, van der Poll T. Sepsis and disseminated intravascular coagulation[J]. J Thromb Thrombolysis, 2003, 16(1-2): 43-47.
[7] Lyons PG, Micek ST, Hampton N, et al. Sepsis-Associated Coagulopathy Severity Predicts Hospital Mortality[J]. Crit Care Med, 2018, 46(5): 736-742. doi: 10.1097/CCM.0000000000002997
[8] Ren C, Li YX, Xia DM, et al. Sepsis-Associated Coagulopathy Predicts Hospital Mortality in Critically Ill Patients With Postoperative Sepsis[J]. Front Med(Lausanne), 2022, 9: 783234.
[9] Innocenti F, Gori AM, Giusti B, et al. Prognostic value of sepsis-induced coagulation abnormalities: an early assessment in the emergency department[J]. Intern Emerg Med, 2019, 14(3): 459-466. doi: 10.1007/s11739-018-1990-z
[10] Xue G, Liang H, Ye J. Development and validation of a predictive scoring system for in-hospital death in In-hospital death in patients with intra-abdominal infection: asingle-center 10-year retrospective study[J]. Front Med(lausnne), 2021, 8: 741914.
[11] Gando S, Iba T, Eguchi Y, et al. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: comparing current criteria[J]. Crit Care Med, 2006, 34(3): 625-631. doi: 10.1097/01.CCM.0000202209.42491.38
[12] Hartemink KJ, Hack CE, Groeneveld AB. Relation between coagulation/fibrinolysis and lactate in the course of human septic shock[J]. J Clin Pathol, 2010, 63(11): 1021-1026. doi: 10.1136/jcp.2010.079707
[13] Jansen TC, van Bommel J, Woodward R, et al. Association between blood lactate levels, Sequential Organ Failure Assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study[J]. Crit Care Med, 2009, 37(8): 2369-2374. doi: 10.1097/CCM.0b013e3181a0f919
[14] Sacha GL, Lam SW, Wang L, et al. Association of Catecholamine Dose, Lactate, and Shock Duration at Vasopressin Initiation With Mortality in Patients With Septic Shock[J]. Crit Care Med, 2022, 50(4): 614-623.
[15] Kobayashi S, Gando S, Morimoto Y, et al. Serial measurement of arterial lactate concentrations as a prognostic indicator in relation to the incidence of disseminated intravascular coagulation in patients with systemic inflammatory response syndrome[J]. Surg Today, 2001, 31(10): 853-859. doi: 10.1007/s005950170022
[16] Shenkman B, Budnik I, Einav Y, et al. Model of trauma-induced coagulopathy including hemodilution, fibrinolysis, acidosis, and hypothermia: Impact on blood coagulation and platelet function[J]. J Trauma Acute Care Surg, 2017, 82(2): 287-292. doi: 10.1097/TA.0000000000001282
[17] Hasegawa D, Nishida K, Hara Y, et al. Differential effect of lactate in predicting mortality in septic patients with or without disseminated intravascular coagulation: a multicenter, retrospective, observational study[J]. J Intensive Care, 2019, 7: 2. doi: 10.1186/s40560-019-0359-3
[18] Eschborn S, Weitkamp JH. Procalcitonin versus C-reactive protein: review of kinetics and performance for diagnosis of neonatal sepsis[J]. J Perinatol, 2019, 39(7): 893-903. doi: 10.1038/s41372-019-0363-4
[19] Schuetz P, Wirz Y, Sager R, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis[J]. Lancet Infect Dis, 2018, 18(1): 95-107. doi: 10.1016/S1473-3099(17)30592-3
[20] Whang KT, Vath SD, Becker KL, et al. Procalcitonin and proinflammatory cytokine interactions in sepsis[J]. Shock, 2000, 14(1): 73-78. doi: 10.1097/00024382-200014010-00013
[21] Hoffmann G, Czechowski M, Schloesser M, et al. Procalcitonin amplifies inducible nitric oxide synthase gene expression and nitric oxide production in vascular smooth muscle cells[J]. Crit Care Med, 2002, 30(9): 2091-2095. doi: 10.1097/00003246-200209000-00023
[22] Ito T. PAMPs and DAMPs as triggers for DIC[J]. J Intensive Care, 2014, 2(1): 67. doi: 10.1186/s40560-014-0067-y
[23] Lippi G, Guidi GC. Laboratory diagnostics in septic disseminated intravascular coagulation[J]. European Oncology Haematology, 2009, 3(1): 19-24. doi: 10.17925/EOH.2009.03.1.19
[24] Asoǧlu R, Tibilli H, Afşin A, et al. Procalcitonin is a predictor of disseminated intravascular coagulation in patients with fatal COVID-19[J]. Eur Rev Med Pharmacol Sci, 2020, 24(22): 11953-11959.
[25] Phua J, Koay ES, Lee KH. Lactate, procalcitonin, and amino-terminal pro-B-type natriuretic peptide versus cytokine measurements and clinical severity scores for prognostication in septic shock[J]. Shock, 2008, 29(3): 328-333. doi: 10.1097/SHK.0b013e318150716b