腹腔感染相关脓毒症患者凝血功能障碍发病及危险因素分析

郭晓芳, 梁培, 尤勇, 等. 腹腔感染相关脓毒症患者凝血功能障碍发病及危险因素分析[J]. 临床急诊杂志, 2022, 23(4): 260-264. doi: 10.13201/j.issn.1009-5918.2022.04.008
引用本文: 郭晓芳, 梁培, 尤勇, 等. 腹腔感染相关脓毒症患者凝血功能障碍发病及危险因素分析[J]. 临床急诊杂志, 2022, 23(4): 260-264. doi: 10.13201/j.issn.1009-5918.2022.04.008
GUO Xiaofang, LIANG Pei, YOU Yong, et al. Risk factors analysis of sepsis induced coagulopathy caused by intra-abdominal infection[J]. J Clin Emerg, 2022, 23(4): 260-264. doi: 10.13201/j.issn.1009-5918.2022.04.008
Citation: GUO Xiaofang, LIANG Pei, YOU Yong, et al. Risk factors analysis of sepsis induced coagulopathy caused by intra-abdominal infection[J]. J Clin Emerg, 2022, 23(4): 260-264. doi: 10.13201/j.issn.1009-5918.2022.04.008

腹腔感染相关脓毒症患者凝血功能障碍发病及危险因素分析

详细信息

Risk factors analysis of sepsis induced coagulopathy caused by intra-abdominal infection

More Information
  • 目的 探讨腹腔感染相关脓毒症凝血功能障碍的危险因素。方法 回顾性研究我院ICU2018年7月—2019年12月期间收治的145例腹腔感染相关脓毒症患者的临床资料,根据脓毒症凝血功能障碍诊断标准分为凝血障碍组和凝血正常组,进行单因素和多因素logistic回归性分析。结果 腹腔感染相关脓毒症患者凝血功能障碍发病率为42.76%,病死率22.58%。凝血正常组和凝血障碍组APACHE Ⅱ评分、发病至入院时间、手术时间、休克、血浆乳酸及降钙素原比较,均差异有统计学意义(均P< 0.05);logistic多因素回归分析显示:乳酸(OR=1.462,P< 0.05)、降钙素原(OR=1.043,P< 0.05)与腹腔感染相关脓毒症发生凝血功能障碍相关。与凝血正常组比较,腹腔感染相关脓毒症凝血障碍组ICU住院时间、多器官功能衰竭及30 d病死率比较差异有统计学意义(P>0.05)。结论 凝血功能障碍是腹腔感染相关脓毒症常见的并发症之一,病死率高,并发症多,血浆乳酸、降钙素原是腹腔感染相关脓毒症患者发生凝血功能障碍的危险因素。
  • 加载中
  • 表 1  脓毒症凝血功能障碍诊断标准

    指标 0分 1分 2分
    PT-INR ≤1.2 >1.2 >1.4
    血小板/(×109·L-1) ≥150 < 150 < 100
    SOFA评分/分 0 1 ≥2
    下载: 导出CSV

    表 2  两组患者并发症及病死率比较  例(%), M(P25P75)

    并发症及病死率 凝血正常组
    (83例)
    凝血障碍组
    (62例)
    P
    ICU住院时间/d 2.00
    (1.00,3.00)
    4.00
    (3.00,7.00)
    < 0.001
    出血 0 2(3.23) 0.181
    菌血症 2(57.83) 3(70.97) 0.651
    MODS 12(14.46) 47(75.81) < 0.001
    30 d病死率/% 0 22.58 < 0.001
    下载: 导出CSV

    表 3  腹腔感染相关脓毒症凝血功能障碍危险因素的单因素分析结果  例(%),X±SM(P25P75)

    危险因素 凝血正常组(83例) 凝血障碍组(62例) χ2/t P
    年龄/岁 70.77±18.55 69.48±11.91 -0.426 0.672
    性别
        男 48(57.83) 44(70.97) 2.641 0.119
        女 35(42.17) 18(29.03)
    基础疾病
        高血压病 33(39.76) 24(38.71) 0.016 1.000
        糖尿病 13(15.66) 6(9.68) 1.117 0.330
        心血管疾病 6(9.68) 2(3.23) 1.091 0.467
    APACHE Ⅱ评分/分 11.58±4.51 13.92±6.03 2.486 0.016
    初始抗生素合理 79(95.18) 59(95.16) 0.000 1.000
    发病至入院时间/h 24.00(13.00,48.00) 24.00(10.00,72.00) -7.040 < 0.001
    术中指标
        手术时间/h 2.33±1.17 2.95±1.18 -2.938 0.005
        休克 26(31.33) 42(67.74) 18.899 < 0.001
        液体平衡量/mL 1321.13±520.66 2372.10±1574.13 -4.955 < 0.001
        出血量/mL 100.00(50.00,150.00) 100.00(50.00,200.00) -1.877 0.061
    手术部位
        上消化道 18(21.69) 14(22.58) 0.016 1.000
        下消化道 65(78.31) 48(77.42)
    原发病
        消化道穿孔 45(54.21) 38(61.29) 0.465 0.403
        肠系膜动脉栓塞 14(16.86) 10(16.12) 0.000 1.000
        肠梗阻 19(22.89) 11(17.74) 0.303 0.536
        嵌顿疝 5(6.02) 3(4.83) 0.096 1.000
    手术方式
        肠切除手术 50(60.24) 38(61.29) 0.016 1.000
        穿孔修补术 18(21.68) 15(24.19) 0.032 1.000
        肠粘连松解 15(18.07) 9(14.51) 0.328 0.655
    术后指标
        革兰阴性杆菌 12(14.45) 16(24.19) 2.250 0.136
        革兰阳性球菌 3(3.61) 4(6.45) 0.622 0.461
        真菌 2(2.40) 3(4.83) 0.629 0.651
        混合感染 2(2.40) 2(3.22) 0.087 1.000
    血乳酸/(mmol·L-1) 1.20(0.90,2.50) 3.00(1.70,4.10) -5.977 < 0.001
    直肠温度/℃ 36.60±2.71 37.11±2.08 -1.081 0.285
    白细胞/(×109·L-1) 10.87±4.72 10.61±7.28 0.234 0.816
    降钙素原/(ng·mL-1) 1.89(0.50,7.00) 17.00(2.83,27.00) -5.387 < 0.001
    C反应蛋白/(mg·dL-1) 110.34±70.48 132.67±62.82 -1.821 0.074
    肝功能损伤 6(7.22) 10(16.13) 2.864 0.111
    下载: 导出CSV

    表 4  腹腔感染相关脓毒症凝血功能障碍危险因素的logistic回归分析

    危险因素 B SE OR(95%CI) P
    乳酸 0.379 0.117 1.462(1.163~1.837) 0.001
    降钙素原 0.042 0.016 1.043(1.011~1.075) 0.008
    下载: 导出CSV
  • [1]

    Leppäniemi A, Kimball EJ, De Laet I, et al. Management of abdominal sepsis-a paradigm shift?[J]. Anaesthesiol Intensive Ther, 2015, 47(4): 400-408. doi: 10.5603/AIT.a2015.0026

    [2]

    Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease[J]. Thromb J, 2019, 17: 10. doi: 10.1186/s12959-019-0198-4

    [3]

    Nystrup KB, Windeløv NA, Thomsen AB, et al. Reduced clot strength upon admission, evaluated by thrombelastography(TEG), in trauma patients is independently associated with increased 30-day mortality[J]. Scand J Trauma Resusc Emerg Med, 2011, 19: 52. doi: 10.1186/1757-7241-19-52

    [4]

    Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287

    [5]

    Iba T, Nisio MD, Levy JH, et al. New criteria for sepsis-induced coagulopathy(SIC)following the revised sepsis definition: a retrospective analysis of a nationwide survey[J]. BMJ Open, 2017, 7(9): e017046. doi: 10.1136/bmjopen-2017-017046

    [6]

    Levi M, de Jonge E, van der Poll T. Sepsis and disseminated intravascular coagulation[J]. J Thromb Thrombolysis, 2003, 16(1-2): 43-47.

    [7]

    Lyons PG, Micek ST, Hampton N, et al. Sepsis-Associated Coagulopathy Severity Predicts Hospital Mortality[J]. Crit Care Med, 2018, 46(5): 736-742. doi: 10.1097/CCM.0000000000002997

    [8]

    Ren C, Li YX, Xia DM, et al. Sepsis-Associated Coagulopathy Predicts Hospital Mortality in Critically Ill Patients With Postoperative Sepsis[J]. Front Med(Lausanne), 2022, 9: 783234.

    [9]

    Innocenti F, Gori AM, Giusti B, et al. Prognostic value of sepsis-induced coagulation abnormalities: an early assessment in the emergency department[J]. Intern Emerg Med, 2019, 14(3): 459-466. doi: 10.1007/s11739-018-1990-z

    [10]

    Xue G, Liang H, Ye J. Development and validation of a predictive scoring system for in-hospital death in In-hospital death in patients with intra-abdominal infection: asingle-center 10-year retrospective study[J]. Front Med(lausnne), 2021, 8: 741914.

    [11]

    Gando S, Iba T, Eguchi Y, et al. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: comparing current criteria[J]. Crit Care Med, 2006, 34(3): 625-631. doi: 10.1097/01.CCM.0000202209.42491.38

    [12]

    Hartemink KJ, Hack CE, Groeneveld AB. Relation between coagulation/fibrinolysis and lactate in the course of human septic shock[J]. J Clin Pathol, 2010, 63(11): 1021-1026. doi: 10.1136/jcp.2010.079707

    [13]

    Jansen TC, van Bommel J, Woodward R, et al. Association between blood lactate levels, Sequential Organ Failure Assessment subscores, and 28-day mortality during early and late intensive care unit stay: a retrospective observational study[J]. Crit Care Med, 2009, 37(8): 2369-2374. doi: 10.1097/CCM.0b013e3181a0f919

    [14]

    Sacha GL, Lam SW, Wang L, et al. Association of Catecholamine Dose, Lactate, and Shock Duration at Vasopressin Initiation With Mortality in Patients With Septic Shock[J]. Crit Care Med, 2022, 50(4): 614-623.

    [15]

    Kobayashi S, Gando S, Morimoto Y, et al. Serial measurement of arterial lactate concentrations as a prognostic indicator in relation to the incidence of disseminated intravascular coagulation in patients with systemic inflammatory response syndrome[J]. Surg Today, 2001, 31(10): 853-859. doi: 10.1007/s005950170022

    [16]

    Shenkman B, Budnik I, Einav Y, et al. Model of trauma-induced coagulopathy including hemodilution, fibrinolysis, acidosis, and hypothermia: Impact on blood coagulation and platelet function[J]. J Trauma Acute Care Surg, 2017, 82(2): 287-292. doi: 10.1097/TA.0000000000001282

    [17]

    Hasegawa D, Nishida K, Hara Y, et al. Differential effect of lactate in predicting mortality in septic patients with or without disseminated intravascular coagulation: a multicenter, retrospective, observational study[J]. J Intensive Care, 2019, 7: 2. doi: 10.1186/s40560-019-0359-3

    [18]

    Eschborn S, Weitkamp JH. Procalcitonin versus C-reactive protein: review of kinetics and performance for diagnosis of neonatal sepsis[J]. J Perinatol, 2019, 39(7): 893-903. doi: 10.1038/s41372-019-0363-4

    [19]

    Schuetz P, Wirz Y, Sager R, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis[J]. Lancet Infect Dis, 2018, 18(1): 95-107. doi: 10.1016/S1473-3099(17)30592-3

    [20]

    Whang KT, Vath SD, Becker KL, et al. Procalcitonin and proinflammatory cytokine interactions in sepsis[J]. Shock, 2000, 14(1): 73-78. doi: 10.1097/00024382-200014010-00013

    [21]

    Hoffmann G, Czechowski M, Schloesser M, et al. Procalcitonin amplifies inducible nitric oxide synthase gene expression and nitric oxide production in vascular smooth muscle cells[J]. Crit Care Med, 2002, 30(9): 2091-2095. doi: 10.1097/00003246-200209000-00023

    [22]

    Ito T. PAMPs and DAMPs as triggers for DIC[J]. J Intensive Care, 2014, 2(1): 67. doi: 10.1186/s40560-014-0067-y

    [23]

    Lippi G, Guidi GC. Laboratory diagnostics in septic disseminated intravascular coagulation[J]. European Oncology Haematology, 2009, 3(1): 19-24. doi: 10.17925/EOH.2009.03.1.19

    [24]

    Asoǧlu R, Tibilli H, Afşin A, et al. Procalcitonin is a predictor of disseminated intravascular coagulation in patients with fatal COVID-19[J]. Eur Rev Med Pharmacol Sci, 2020, 24(22): 11953-11959.

    [25]

    Phua J, Koay ES, Lee KH. Lactate, procalcitonin, and amino-terminal pro-B-type natriuretic peptide versus cytokine measurements and clinical severity scores for prognostication in septic shock[J]. Shock, 2008, 29(3): 328-333. doi: 10.1097/SHK.0b013e318150716b

  • 加载中
计量
  • 文章访问数:  1375
  • PDF下载数:  698
  • 施引文献:  0
出版历程
收稿日期:  2022-01-20
刊出日期:  2022-04-10

目录