-
Abstract: Sepsis is one of the main causes of intensive care unit admission and the poor prognosis in critically ill patients. As sepsis progresses rapidly, antimicrobial therapy should be started as soon as possible. The present identification of pathogens, which is important for sepsis diagnosis and guiding antimicrobial therapy, is time-consuming and limited by poor detection performance, leading to the missing prompt and adequate antimicrobial therapy. Therefore, it is important to accelerate the identification of the causative species in patients with sepsis. Nowadays, many molecular-based detection techniques, characterized by fast detection and high sensitivity, have been applied in clinical practice, multiplex PCR and metagenomic sequencing, for example. In addition, some new molecular techniques, such as digital PCR, third generation sequencing and cell-free DNA sequencing are also being explored to make up for deficiencies of the current techniques, further accelerating the identification of pathogens, as well as improving the detection rate, which may provide new evidences for the early diagnosis, early identification of pathogens and prognostic assessment for patients with sepsis.
-
Key words:
- sepsis /
- infection /
- microbiological techniques /
- molecular diagnostic techniques
-
表 1 病原微生物分子检测技术
技术名称 方法 耗时/h 敏感度 特异度 最低检测限度/(CFU·mL-1) IridicaPlex ID[12] Multiplexed PCR+ESI-MS 6 77%~91% 87%~99% 0.25~128 SeptiFast[13-14] qRT-PCR+probe hybridization 6 60%~95% 74%~99% 3~100 SepsiTest[14] PCR+Sangersequencing 8~10 37.5%~78.6% 86.8%~94.4% 10~80 U-dHRM[6] dPCR+HRM 3 50~100 IC 3D[17] Droplet+DNA probe 1~4 10 Karius test[25] cfDNA sequencing 29 92.9% 62.7% MinION[26] Nanopore sequencing 5~6 -
[1] Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287
[2] Cecconi M, Evans L, Levy M, et al. Sepsis and septic shock[J]. Lancet, 2018, 392(10141): 75-87. doi: 10.1016/S0140-6736(18)30696-2
[3] Fleischmann-Struzek C, Mellhammar L, Rose N, et al. Incidence and mortality of hospital-and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis[J]. Intensive Care Med, 2020, 46(8): 1552-1562. doi: 10.1007/s00134-020-06151-x
[4] Evans L, Rhodes A, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021[J]. Crit Care Med, 2021, 49(11): e1063-e1143. doi: 10.1097/CCM.0000000000005337
[5] Maugeri G, Lychko I, Sobral R, et al. Identification and Antibiotic-Susceptibility Profiling of Infectious Bacterial Agents: A Review of Current and Future Trends[J]. Biotechnol J, 2019, 14(1): e1700750. doi: 10.1002/biot.201700750
[6] Sinha M, Jupe J, Mack H, et al. Emerging Technologies for Molecular Diagnosis of Sepsis[J]. Clin Microbiol Rev, 2018, 31(2): e00089-17.
[7] Blauwkamp TA, Thair S, Rosen MJ, et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease[J]. Nat Microbiol, 2019, 4(4): 663-674. doi: 10.1038/s41564-018-0349-6
[8] Gaňová M, Zhang H, Zhu H, et al. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool[J]. Biosens Bioelectron, 2021, 181: 113155. doi: 10.1016/j.bios.2021.113155
[9] Church DL, Cerutti L, Gürtler A, et al. Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory[J]. Clin Microbiol Rev, 2020, 33(4): e00053-19.
[10] Kuypers J, Jerome KR. Applications of Digital PCR for Clinical Microbiology[J]. J Clin Microbiol, 2017, 55(6): 1621-1628. doi: 10.1128/JCM.00211-17
[11] Vincent JL, Sakr Y, Singer M, et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017[J]. JAMA, 2020, 323(15): 1478-1487. doi: 10.1001/jama.2020.2717
[12] Metzgar D, Frinder MW, Rothman RE, et al. The IRIDICA BAC BSI Assay: Rapid, Sensitive and Culture-Independent Identification of Bacteria and Candida in Blood[J]. PLoS One, 2016, 11(7): e0158186. doi: 10.1371/journal.pone.0158186
[13] Giacobbe DR, Giani T, Bassetti M, et al. Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: therapeutic implications[J]. Clin Microbiol Infect, 2020, 26(6): 713-722. doi: 10.1016/j.cmi.2019.09.023
[14] Stevenson M, Pandor A, Martyn-St James M, et al. Sepsis: the LightCycler SeptiFast Test MGRADEⓇ, SepsiTestTM and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi-a systematic review and economic evaluation[J]. Health Technol Assess, 2016, 20(46): 1-246. doi: 10.3310/hta20460
[15] Scheler O, Postek W, Garstecki P. Recent developments of microfluidics as a tool for biotechnology and microbiology[J]. Curr Opin Biotechnol, 2019, 55: 60-67. doi: 10.1016/j.copbio.2018.08.004
[16] Salipante SJ, Jerome KR. Digital PCR-An Emerging Technology with Broad Applications in Microbiology[J]. Clin Chem, 2020, 66(1): 117-123. doi: 10.1373/clinchem.2019.304048
[17] Abram TJ, Cherukury H, Ou CY, et al. Rapid bacterial detection and antibiotic susceptibility testing in whole blood using one-step, high throughput blood digital PCR[J]. Lab Chip, 2020, 20(3): 477-489. doi: 10.1039/C9LC01212E
[18] Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly[J]. Brief Bioinform, 2019, 20(4): 1125-1136. doi: 10.1093/bib/bbx120
[19] Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: past, present and future[J]. Nature, 2017, 550(7676): 345-353. doi: 10.1038/nature24286
[20] van Belkum A, Burnham CD, Rossen J, et al. Innovative and rapid antimicrobial susceptibility testing systems[J]. Nat Rev Microbiol, 2020, 18(5): 299-311. doi: 10.1038/s41579-020-0327-x
[21] Lavezzo E, Barzon L, Toppo S, et al. Third generation sequencing technologies applied to diagnostic microbiology: benefits and challenges in applications and data analysis[J]. Expert Rev Mol Diagn, 2016, 16(9): 1011-1023. doi: 10.1080/14737159.2016.1217158
[22] Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 update[J]. Intensive Care Med, 2018, 44(6): 925-928. doi: 10.1007/s00134-018-5085-0
[23] Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47(11): 1181-1247. doi: 10.1007/s00134-021-06506-y
[24] Gu W, Miller S, Chiu CY. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection[J]. Annu Rev Pathol, 2019, 14: 319-338. doi: 10.1146/annurev-pathmechdis-012418-012751
[25] Grumaz S, Stevens P, Grumaz C, et al. Next-generation sequencing diagnostics of bacteremia in septic patients[J]. Genome Med, 2016, 8(1): 73. doi: 10.1186/s13073-016-0326-8
[26] Grumaz C, Hoffmann A, Vainshtein Y, et al. Rapid Next-Generation Sequencing-Based Diagnostics of Bacteremia in Septic Patients[J]. J Mol Diagn, 2020, 22(3): 405-418. doi: 10.1016/j.jmoldx.2019.12.006
[27] 黄昆鹏. 脓毒症的定义、诊断与早期干预——不可分割的三要素[J]. 临床急诊杂志, 2021, 22(3): 221-226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202103016.htm
[28] Hu B, Tao Y, Shao Z, et al. A Comparison of Blood Pathogen Detection Among Droplet Digital PCR, Metagenomic Next-Generation Sequencing, and Blood Culture in Critically Ill Patients With Suspected Bloodstream Infections[J]. Front Microbiol, 2021, 12: 641202. doi: 10.3389/fmicb.2021.641202
[29] Kisat MT, Odenheimer-Bergman A, Markus H, et al. Plasma metagenomic sequencing to detect and quantify bacterial DNA in ICU patients suspected of sepsis: A proof-of-principle study[J]. J Trauma Acute Care Surg, 2021, 91(6): 988-994.
[30] Chen P, Li S, Li W, et al. Rapid diagnosis and comprehensive bacteria profiling of sepsis based on cell-free DNA[J]. J Transl Med, 2020, 18(1): 5. doi: 10.1186/s12967-019-02186-x
[31] Ziegler I, Lindström S, Källgren M, et al. 16S rDNA droplet digital PCR for monitoring bacterial DNAemia in bloodstream infections[J]. PLoS One, 2019, 14(11): e0224656. doi: 10.1371/journal.pone.0224656
[32] Fida M, Wolf MJ, Hamdi A, et al. Detection of Pathogenic Bacteria From Septic Patients Using 16S Ribosomal RNA Gene-Targeted Metagenomic Sequencing[J]. Clin Infect Dis, 2021, 73(7): 1165-1172. doi: 10.1093/cid/ciab349
[33] Zhou M, Wu Y, Kudinha T, et al. Comprehensive Pathogen Identification, Antibiotic Resistance, and Virulence Genes Prediction Directly From Simulated Blood Samples and Positive Blood Cultures by Nanopore Metagenomic Sequencing[J]. Front Genet, 2021, 12: 620009. doi: 10.3389/fgene.2021.620009
[34] Cambau E, Durand-Zaleski I, Bretagne S, et al. Performance and economic evaluation of the molecular detection of pathogens for patients with severe infections: the EVAMICA open-label, cluster-randomised, interventional crossover trial[J]. Intensive Care Med, 2017, 43(11): 1613-1625. doi: 10.1007/s00134-017-4766-4
[35] Irwin AD, Coin L, Harris P, et al. Optimising Treatment Outcomes for Children and Adults Through Rapid Genome Sequencing of Sepsis Pathogens. A Study Protocol for a Prospective, Multi-Centre Trial(DIRECT)[J]. Front Cell Infect Microbiol, 2021, 11: 667680. doi: 10.3389/fcimb.2021.667680
[36] 黄飞, 祁玮, 何健, 等. 感染部位与发生脓毒症肝损伤的相关性研究[J]. 临床急诊杂志, 2021, 22(10): 653-656. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202110004.htm
[37] 金魁, 王玉兰, 汪跃国, 等. 不同感染部位脓毒症急性肾损伤发生率及相关死亡风险分析[J]. 临床急诊杂志, 2021, 22(7): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZLC202107002.htm
[38] Watanabe N, Kryukov K, Nakagawa S, et al. Detection of pathogenic bacteria in the blood from sepsis patients using 16S rRNA gene amplicon sequencing analysis[J]. PLoS One, 2018, 13(8): e0202049. doi: 10.1371/journal.pone.0202049
[39] Goggin KP, Gonzalez-Pena V, Inaba Y, et al. Evaluation of Plasma Microbial Cell-Free DNA Sequencing to Predict Bloodstream Infection in Pediatric Patients With Relapsed or Refractory Cancer[J]. JAMA Oncol, 2020, 6(4): 552-556. doi: 10.1001/jamaoncol.2019.4120
[40] Han D, Li R, Shi J, et al. Liquid biopsy for infectious diseases: a focus on microbial cell-free DNA sequencing[J]. Theranostics, 2020, 10(12): 5501-5513. doi: 10.7150/thno.45554