Construction of a model for predicting the prognosis of patients with acute cerebral infarction after thrombolysis
-
摘要: 目的:建立急性脑梗死患者溶栓后预测预后的模型。方法:回顾性分析115例纳入研究范围的溶栓患者,其中预后良好组77例,预后不良组38例。收集患者信息:年龄、吸烟史、BMI、入院至开始溶栓时间(DNT)、糖化血红蛋白、相对表观扩散系数(rADC)、溶栓后24 h的美国国立卫生研究院卒中量表(NIHSS)评分、发病3个月后Barthel指数评分、居住地及文化水平等。应用逻辑回归并根据赤池信息准则(AIC),找出进入模型的变量,并获得预测模型方程。采用受试者工作特征曲线(ROC)及曲线下面积(AUC)来评价模型的预测效能。结果:预后良好组77例(66.95%);预后不良组38例(33.05%)。rADC,年龄,DNT进入预测模型,并获得预测模型方程=-6.942×rADC+1.576×年龄+1.181×DNT。模型ROC曲线下面积为0.897(95%CI:0.826~0.946),敏感度及特异度分别为92.11%和76.62%,约登指数为0.687 3。Hosmer and Lemeshow拟合优度检验P=0.187。结论:本研究所得预测模型可以科学、有效地预测急性脑梗死患者溶栓治疗的预后,且指标简单易得,方便指导临床工作。Abstract: Objective: To establish a model for predicting the prognosis of patients with acute cerebral infarction after thrombolysis.Methods: One hundred and fifteen patients with intravenous thrombolysis were retrospectively analyzed, including 77 patients in the good prognosis group and 38 patients in the bad prognosis group. Patient's information was collected: age, smoking history, body mass index(BMI), door to needle time(DNT), relative apparent diffusion coefficient(rADC), glycosylated hemoglobin, The National Institutes of Health Stroke Scale(NIHSS) score of 24 hours after thrombolysis, Barthel index three months after the onset of the disease, residential address, educational level. By means of Logistic regression and Akaike Information Criterion(AIC), the variables entering the model were found out. The predictive model equation was obtained. The predictive effectiveness of the model was evaluated by the Receiver Operating Characteristic curve(ROC) and area under the curve(AUC).Results: rADC, age, and DNT entered the prediction model, and the prediction model equation was obtained=-6.942×rADC+1.576×age+1.181×DNT. The area under the ROC curve of the model is 0.897,(95%CI:0.826-0.946), the sensitivity and specificity are 92.11% and 76.62%, respectively, and the Youden index is 0.6873. Hosmer and Lemeshow goodness-of-fit test P=0.187.Conclusion: The prediction model obtained in this study can scientifically and effectively predict the prognosis of patients with acute cerebral infarction after thrombolysis, and all the indicators are simple and easy to be obtained, which can guide the next clinical treatment.
-
Key words:
- acute cerebral infarction /
- predictive model /
- intravenous thrombolysis
-
[1] 邓伟,胡玉龙,牛江峰,等.治疗性浅低温在缺血性脑卒中的研究进展[J].实用医学杂志,2019,35(20):3119-3123.
[2] 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组.中国急性脑梗死诊治指南2018[J].中华神经科杂志,2018,51(9):666-682.
[3] Powers WJ,Rabinstein AA,Ackerson T,et al.2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke:A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association[J].Stroke,2018,49(3):e46-e110.
[4] 周辉,杨培全,冯兵,等.急性缺血性卒中患者入院时临床资料对患者短期预后结局的预测模型建立[J].实用医学杂志,2020,36(13):1797-1802.
[5] 潘双杰,何远宏,王楠.首发缺血性卒中患者短期预后评价模型[J].实用医学杂志,2016,32(19):3238-3241.
[6] 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组.中国急性缺血性脑卒中诊治指南2014[J].中华神经科杂志,2015,48(4):246-257.
[7] Beard DJ,Logan CL,McLeod DD,et al.Ischemic penumbra as a trigger for intracranial pressure rise-A potential cause for collateral failure and infarct progression?[J].J Cereb Blood Flow Metab,2016,36(5):917-927.
[8] Hu LB,Hong N,Zhu WZ.Quantitative measurement of cerebral perfusion with intravoxel incoherent motion in acute ischemia stroke:initial clinical experience[J].Chin Med J(English),2015,128(19):2565-2569.
[9] El Nawar R,Yeung J,Labreuche J,et al.MRI-Based Predictors of Hemorrhagic Transformation in Patients With Stroke Treated by Intravenous Thrombolysis[J].Front Neurol,2019,10:897.
[10] Sui HJ,Yan CG,Zhao ZG,et al.Prognostic Value of Diffusion-Weighted Imaging(DWI)Apparent Diffusion Coefficient(ADC)in Patients with Hyperacute Cerebral Infarction Receiving rt-PA Intravenous Thrombolytic Therapy[J].Med Sci Monit,2016,22:4438-4445.
[11] 钱小燕,王万华,鲍治诚,等.血浆脂蛋白磷脂酶A2与急性脑梗死严重程度及预后的相关性研究[J].中国实用神经疾病杂志,2020,23(5):374-379.
[12] 费菲,徐勤荣,孔凡贞,等.甲状腺病态综合征在急性脑梗死预后预测中的意义[J].临床神经病学杂志,2019,32(5):364-367.
[13] 许新书,翟宏江,胡文霞.缺血性脑小血管病危险因素分析及其对急性脑梗死患者预后的影响[J].安徽医学,2018,39(7):852-854.
[14] 张雯君,吴佳逸,陈科春.缩短DNT时间对急性脑梗死静脉溶栓患者预后的影响[J].世界最新医学信息文摘,2019,19(61):153-154.
[15] Mikulík R,Kadlecová P,Czlonkowska A,et al.Factors influencing in-hospital delay in treatment with intravenous thrombolysis[J].Stroke,2012,43(6):1578-1583.
[16] Wen L,Zhang S,Wan K,et al.Risk factors of haemorrhagic transformation for acute ischaemic stroke in Chinese patients receiving intravenous thrombolysis:A meta-analysis[J].Medicine(Baltimore),2020,99(7):e18995.
[17] Seet RC,Rabinstein AA.Symptomatic intracranial hemorrhage following intravenous thrombolysis for acute ischemic stroke:a critical review of case definitions[J].Cerebrovasc Dis,2012,34(2):106-114.
[18] 罗高权,曾凡杰,武肖娜,等.组建脑卒中中心对急性缺血性脑卒中患者诊疗指标的影响[J].实用医学杂志,2018,34(6):885-889.
[19] 中华医学会神经病学分会,中华医学会神经病学分会神经血管介入协作组.急性脑梗死早期血管内介入治疗流程与规范专家共识[J].中华神经科杂志,2017,50(3):172-177.
[20] 杨扬,陈玲玲.静脉溶栓治疗急性脑梗死血管再闭塞的影响因素分析[J].临床急诊杂志,2020,21(2):153-156.
[21] 王耀辉,吕喆,张重阳,等.急性脑梗死重组组织型纤溶酶原激活剂溶栓治疗出血转化的危险因素分析[J].临床急诊杂志,2020,21(5):380-384.
[22] 王耀辉,张重阳,孙伟,等.优化溶栓流程对轻型急性缺血性卒中院内延误及预后的影响[J].中国卒中杂志,2019,14(12):1205-1208.
[23] 刘瑶,王军,李瑾,等.院前急救联合绿色通道在急性缺血性脑卒中的应用效果[J].中华卫生应急电子杂志,2018,4(6):336-340.
[24] Kamal N,Jeerakathil T,Stang J,et al.Provincial Door-to-Needle Improvement Initiative Results in Improved Patient Outcomes Across an Entire Population[J].Stroke,2020,51(8):2339-2346.
[25] Darehed D,Blom M,Eva-Lotta Glader,et al.In-Hospital Delays in Stroke Thrombolysis:Every Minute Counts[J].Stroke,2020,51(8):2536-2539.
计量
- 文章访问数: 379
- PDF下载数: 1
- 施引文献: 0